دسته بندی | کامپیوتر و IT |
بازدید ها | 31 |
فرمت فایل | doc |
حجم فایل | 458 کیلو بایت |
تعداد صفحات فایل | 68 |
بهینهسازی و پردازش پرس و جو
در این تحقیق ما به تکنیکهای بکار رفته توسط DMBS برای پردازش، بهینهسازی و اجرای پرس و جوهای سطح بالا میپردازیم. پرس و جوی بیان شده در زبان پرسو جوی سطح بالا مثل SQL ابتدا باید پویش و تجزیه . معتبر شود. پویشگر (اسکنر) علامت هر زبان، مثل لغات کلیدی SQL، اساس ویژگی، و اساس رابطه، را در متن پرس و جو شناسایی میکند، در عوض تجربه کننده، ساختار دستوری پرس و جو را برای تعیین اینکه آیا بر طبق قوانین دستوری زبان پرس و جو تدوین میشود یا خیر، چک میکند. پرس و جو باید همچنین معتبر شود، با چک کردن اینکه تمام اسامی رابطه و ویژگی معتبر هستند و اسامی معنیدار در طرح پایگاه اطلاعاتی ویژهای پرس و جو میشوند. نمونه داخلی پرس و جو ایجاد میشود، که تحت عنوان ساختار دادههای درختی بنام درخت پرس و جو میباشد. ارائه پرس و جو با استفاده از ساختار دادههای گراف بنام گراف پرس و جو نیز امکان پذیر است. DOMS باید استراتژی اجرایی برای بازیابی نتیجه پرس و جو از فایلهای پایگاه اطلاعاتی را هدایت کند. پرس و جو استراتژیهای اجرایی بسیاری دارد. و مرحلة انتخاب، مورد مناسبی برای پردازش پرس وجو تحت عنوان بهینهسازی پرس و جو شناخته شده است. تصویر 1، مراحل مختلف پردازش پرس و جوی سطح بالا را نشان میدهد. قطعه بر نامه بهینهساز پرس وجو، وظیفه ایجاد طرح اجرایی را بعهده دارد و ژنراتور (تولید کننده) که ، کد را برای اجرای آن طرح ایجاد میکند. پردازنده پایگاه اطلاعاتی زمان اجرا وظیفه اجرای که پرس و جو را بعهده دارد، خواه در وضعیت کامپایل شده یا تفسیر شده جهت ایجاد نتیجه پرس و جو. اگر خطای زمان اجرا نتیجه شود، پیام خطا توسط پایگاه اطلاعاتی زمان اجرا ایجاد میشود.
اصطلاح بهینهسازی نام بی مسمایی است چون در بعضی موارد، طرح اجرایی انتخاب شده، استراتژی بهینه نمیباشد، آن فقط استراتژی کارآمد معقول برای اجرای پرس و جو است. یافتن استراتژی بهینه، ضامن صرف زمان زیادی است، بجز برای سادهترین پرس و جوها، ممکن است به اطلاعاتی روی چگونگی اجرای فایلها در فهرستهای فایلها، اطلاعاتی که ممکن است کاملاً در کاتالوگ DBMS در دسترس نباشد، نیاز باشد. از اینرو، برنامهریزی استراتژی اجرا ممکن است توصیف درستتری نسبت به بهینهسازی پرس و جو باشد. برای زبانهای پایگاه اطلاعاتی (دریایی) جهتیابی در سطح پایینتر در سیستمهای قانونی، مثل شبکه DML شبکهای یا MOML سلسله مراتبی، برنامه نویس باید، استراتی اجرای پذیرش و جو را انتخاب کند ضمن اینکه برنامه پایگاه اطلاعاتی را مینویسد. اگر DBMS فقط زیان جهتیابی را ارائه دهد. فرصت و نیاز محدودی برای بهینهسازی پرس وجوی وسیع توسط DBMS وجود دارد، در عوض به برنامه نویس قابلیت انتخاب استراتژی اجرایی بهینه ارائه میشود. بعبارت دیگر، زبان پرس و جو در سطح بالا، مثل SQL برای DBMSهای رابطهای یا OQL برای DBMSهای مقصد، در ماهیت تفریطیتر است. چون آنچه نتایج مورد نظر پرس و جو است بغیر از شناسایی جزئیات چگونگی بدست آمدن نتیجه، را تعیین میکند. بهینهسازی پرس و جو برای پرس و جوهایی ضروی است که در زبان پرس و جوی سطح بالا تعیین می شوند. ما روی توصیف بهینهسازی پرس و جو در زمینه ROBMS تمرکز میکنیم چون بسیاری از تکنیکهایی که توصیف می کنیم برای، برای ODBMSها تطبیق یافتهاند. DBMS رابطهای باید استراتژیهای اجرای پرس و جوی دیگری را ارزیابی کند و استراتژی بهینه یا کارآمد معقولی را انتخاب کند. هر DBMS ، تعدادی الگاریتم دسترسی به پایگاه اطلاعاتی کلی دارد که علامتهای رابطهای مثل SELECT یا JOIN یا ترکیبی از این عملیات ها را اجرا میکند. تنها استراتژیهای اجرایی که میتوانند توسط الگاریتمهای دسترسی DBMS اجرا شوند و برای طراحی پایگاه اطلاعاتی فیزیکی ویژه و پرس و جوی خاص بکار روند، میتوانند توسط قطعه برنامه بهینهسازی پرس و جو در نظر گرفته شوند. ما با بحث کلی چگونگی ترجمه پرس و جوهای SQL به پرس و جوهای جبری رابطهای و در بهینهشدن آنها کار را شروع میکنیم. بعد ما روی الگاریتمها برای اجرای عملیاتهای رابطهای در بخش 1802 بحث میکنیم. بدنبال این مطلب، بررسی از استراتژیهای بهینهسازی پرس و جو را ارائه میدهیم. دو تکنیک اصلی برای اجرای بهینهسازی پرس و جو وجود دارد. اولین تکنیک بر اساس قوانین ذهنی جهت ترتیب دادن عملیاتها در استراتژی اجرای پرس و جو میباشد. ذهن قانونی است که بخوبی در اکثر موارد عمل میکند ولی برای کار مناسب در هر مورد کنش تضمین نمیشود. قوانین عملیاتها را در درخت پرس وجو مجدداً ترتیب میدهند. دومین تکنیک شامل برآورد هزینه استراتژیهای اجرای متفاوت و انتخاب طرح اجرایی با پایینترین هزینه برآورد است. دو تکنیک معمولاً در بهینه ساز پرس و جو (باهم ترکیب میشوند) بهم ملحق میگردند. بررسی مختصری از عوامل در نظر گرفته شده در طول بهینهسازی پرس و جو در RDBMS بازرگانی ORACLL= را ارائه میدهیم. در بخش بعدی نوعی بهینهسازی پرس و جوی معنایی را ارائه میدهد که در آن محدودیتهای شناخته شده برای پرداختن به استراتژیهای اجرایی پرس و جوی کارآمد استفاده میشوند. 2 – ترجمه پرس و جوهای SQL به پرس و جوهای رابطهای: در عمل، SQL زبان پرس وجویی است که در اکثر RDBMS های بازرگانی استفاده میشود. پرس وجوی SQL ، ابتدا به عبارت جبری رابطهای توسعه یافته معادل، نمایانگر ساختار داروهای درخت پرس و جو، ترجمه میشود و بعد بهینهسازی میشود. پرس و جوهای SQL به بلوکهای پرس و جو تجزیه میشوند، که واحدهای اساسی را تشکیل میدهند که میتوانند به عملکردهای جبری ترجمه شوند و بهینهسازی شوند. بلوک پرس و جو شامل عبارت SELECT- FROM-WHERE تکی و بندهای Groop By و HAVING است چنانچه اینها بخشی از بلوک باشند. از اینرو، پرس و جوهای تو در تو در پرس و جو بعنوان بلوکهای پرس و جوی مجزا شناسایی میشوند. چون SQL شامل عملکردهای گروهی، مثل MAX ، COUNT,SUM میباشد، این عملگرها باید در پرس و جوی جبری توسعه یافتهای شامل شوند، همانطوریکه در بخش 705 توصیف شد. پرس و جوی SQL در رابطه EMPLOEE در تصویر 705 را در نظر بگیرید: این پرس و جو شامل، پرس و جوی فرعی تو در تو است و از اینرو به دو بلوک تجزیه میشود. بلوک درونی بدین صورت است: و بلوک بیرونی بدین صورت می باشد: که C نمایانگر نتیجه حاصله از بلوک درونی است. بلوک درونی به عبارت جبری رابطهای توسعه یافته زیر ترجمه شده است: و بلوک بیرونی به عبارت زیر ترجمه شده است: بهینهساز پرس و جو، طرح اجرایی را برای هر بلوک انتخاب میکند. ما باید اشاره کنیم به در مثال فوق، بلوک درونی نیاز به ارزیابی شدن دارد تنها زمانی که، حداکثرحقوقی که بعکار میرود که بعنوان ثابت C، توسط بلوک بیرونی استفاده میشود. ما اینرو پرس و جوی تودرتوی غیرمرتبط نامیدیم (در فصل 8). آن برای بهینهسازی پرس و جوهای تو در توی مرتبط پیچیدهتر، خیلی سختتر است، جایی که متغیر Tuple از بلوک بیرونی در بند WHERE در بلوک درونی ظاهر میشود. 1802- الگاریتم های انسانی برای اجرای عملیاتهای پرس و جو: RDBMS شامل الگاریتمهایی برای اجرای انواع مختلف عملیاتهای رابطهای است که میتوانند در استراتژی اجرای پرس و جو نمایان شوند، این عملیاتها شامل عملیاتهای جبری بیسیک (اصلی) و توسعه یافته مورد بحث در فصل 7 ، و در بسیاری موارد، الحاقاتی از این عملیاتها میباشد. برای هر یک از این عملیات ها یا الحاقی از عملیاتها، یک یا چند الگاریتم برای اجرای عملیاتها در دسترس قرار دارند. الگاریتم ممکن است فقط برای ساختارهای ذخیره خاص مسیرهای دستیابی بکار روند، در اینصورت ، تنها در صورتی استفاده میشود که فایل های موجود در عملیات شامل این مسیرهای دستیابی هستند. در این بخش، ما به الگاریتمهای نمونه بکار رفته برای اجرای SEKECT ، JOIN و دیگر عملیاتهای رابطهای میپردازیم. ما بحث مرتب کردن خارجی را در بخش 180201 آغاز میکنیم که در قلب عملیاتهای رابطهای قرار دارد که از استراتژیهای ادغام کردن به مرتب کردن استفاده میکند. بعد ما به الگاریتمهایی برای اجرای عملیات SELECT در بخش 180202 میپردازیم، به عملیات JOIN در بخش 180203 و عملیات PRIJECT و عملیاتهای مجموعه در بخش IE 1802 و عملیاتهای گروهی و جمعی در بخش 2 .2 . 18 میپردازیم. 1. 2. 18- مرتب کردن خارجی: مرتب کردن، یکی از الگاریتمهای اولیه بکار رفته در پردازش پرس و جو است. برای مثال، به هر وقت پرس و جوی SQL ، بعد ORDER BY را تعیین میکند، نتیجه پرس و جو باید مرتب گردد. مرتب کردن، مؤلفه کلیدی در الگاریتمهای مرتب کردن- ادغام کردن (مرتب-ادغام) بکار رفته برای Join و عملیاتهای دیگر، دور الگاریتمهای حذف کپی برای عملیات PROYECT است. ما روی بعضی از این الگاریتمها در بخش 3. 2. 18 و 4. 02 18 بحث خواهیم کرد. توجه کنید که مرتب کردن در صورتی که اجتناب میشود که شاخص مناسب برای امکان دسترسی مرتب شده به ثبتها وجود دارد. مرتب کردن خارجی به الگاریتمهای مرتب کردن اشاره میکند که برای فایل های بزرگ ثبت های ذخیره شده روی دیسک مناسب هستند که در حافظه اصلی، مثل اکثر فایل های پایگاه اطلاعاتی تناسب نمییابد. الگاریتم مرتب کردن خارجی نمونه از استراتژی مرتب- ادغام استفاده میکند، که با مرتب کردن- فایلهای فرعی کوچک بنام اجراها در فایل اصلی شروع میشود و بعد اجراها مرتب شده ادغام میشوند، فایلهای فرعی مرتب شده بزرگتری ایجاد میشوند که بترتیب ادغام میشوند. الگاریتم ادغام –مرتب، مثل دیگر الگاریتم های پایگاه اطلاعاتی به فاضی بافر در حافظه اصلی نیاز دارد، جایی که مرتب کردن واقعی و ادغام اجراها انجام می شود. الگاریتم اصلی (سیبک) شرح داده شده در تصویر 1802 ، شامل دو مرحله است: (1) فاز یا مرحله مرتب کردن و (2) مرحله ادغام.در مرحله مرتب کردن، اجراهای فایلی که میتواند در فضای باز موجود تناسب یابد در حافظه اصلی خوانده میشوند و با استفاده از الگاریتم مرتب کردن داخلی مرتب میشود عقب دیسک بعنوان فایلهای فرعی مرتب شده متوفی نوشته میشود. اندازه اجرا و تعداد اجراهای آغازین توسط تعداد بلوکهای فایل (b) و فضای بافر موجود (NB) بیان میشود. برای مثال اگر بلوکو اندازه قایل 1024=b بلوک باشد، بعد یا 205 اجرای آغازین در هر اندازه 5 بلوک است. از اینرو، بعد از مرحله مرتب کردن، 205 اجرای مرتب شده بعنوان فایلهای فرعی موقتی روی دیسک ذخیره میشوند. اجرای مرتب شده بعنوان فایلهای فرعی موقتی و روی دیسک ذخیره میشوند. در مرحله ادغام شدن، اجراهای مرتب شده، در طول یک یا چند گذر ادغام میشوند. درجه ادغام شدن تعداد اجراهایی است که میتوانند با همدیگر در هر گذر ادغام شوند. در هر گذر، یک بلوک بافر، برای حفظ یک بلوک از هر اجرای ادغام شده نیاز میباشد، و یک بلوک برای تشکیل یک بلوک نتیجه ادغام لازم است . از اینرو، کوچکتر از و است و تعداد گذرها، است. در مثالها، است. لذا، 205 اجرای مرتب شده آغازین در 25 تا در پایان اولیه گذر ادغام میشود: که بعد به 12، بعد 4 بعد یک اجرا ادغام میشوند، که بدین معنی است که چهارگذر لازم میباشد. حداقل از 2، عملکرد بدترین مورد الگاریتم را ارائه میدهد که بدین قرار است: اولین جمله، تعداد دسترسیهای بلوک برای مرحله مرتب سازی را نشان میدهد، چون هر بلوک فایل دو برابر دسترسی میشود، یکبار برای خواندن در حافظه، یکبار برای نوشتن ثبتها دیسک بعد از مرتب کردن. دومین جمله، تعداد دسترسیهای بلوک برای مرحله ادغام کردن را نشان میدهد، با فرض اینکه بدترین مورد از 2 وجود دارد. بطور کلی، ثبت وقایع در مبنای و عبارت برای تعداد دسترسیهای بلوک نوین قرار میشود: تصویر 1802- شرح الگاریتم ادغام – مرتب کردن برای مرتب کردن خارجی: 2. 2. 18- اجرا و پیادهسازی عملیات SELECT : تعداد Optionهایی ( انتخابها) برای اجرای عملیات SELECT وجود دارد، که بعضی به فایل دارای مسیرهای دستیابی خاص بستگی دارند و تنها برای انواع معین شرایط انتخاب بکار میرود. ما به الگاریتمهایی جهت اجرای SELECT در این بخش میپردازیم. ما از عملیاتهای زیر استفاده میکنیم که روی پایگاه اطلاعاتی رابطهای در تصویر 507 مشخص شده و بحث ما را روشن میسازد: متدهای جستجو برای انتخاب ساده: تعدادی الگاریتم های جستجو برای انتخاب ثبتها از فایل امکانپذیر میباشند، چون ثبتهای فایل نامیده می شوند، چون ثبتهای فایل را برای جستجو و بازیابی ثبتهایی که شرایط انتخاب را برآورده میسازند، پویش میکنند. اگر الگاریتم جستجو شامل کاربرد شاخص باشد، جستحوی شاخص پویش شاخص نامیده میشد. متدهای جستجوی زیر ( 1S تا s6 ) مثالهایی از الگاریتمهای جستجو هستند که میتوانند برای اجرای عملیات انتخاب بکار روند: - s1 : جستجوی خطی (روش برنامهسازی پر قدرت): بازیابی هر ثبت در فایل، و تست اینکه آیا مقادیر ویژگی آن، شرط انتخاب را براورده میسازد یا خیر. - S2: جستجوی بنیادی (دودویی): اگر شرط انخاب شامل قیاس تساوی روی ویژگی کلیدی باشد که روی آن فایل مرتب میشود، جستجوی بنیادی، که نسبت به جستجوی خطی کارآمدتر است، میتواند بکار رود. مثال OP1 است چنانچه ssn ، ویژگی کلیدی با شاخص اولیه( یا کلید hash) باشد، برای مثال، SNN-‘123456789’ در opt، شاخص اولیه یا کلید hosh) برای بازیابی ثبت استفاده میشود، توجه کنید که این شرط، ثبت تکی را بازیابی میکند. - S4: کاربرد شاخص اولیه برای بازیابی ثبتهای متعدد: اگر شرط انتخاب شدن قیاس تساوی روی ویژگی غیر کلیدی با شاخص خدشهسازی باشد، برای مثال در ، شاخص را برای بازیابی کل ثبتها در برآورده ساختن شرط، استفاده کنید. - S6: بکارگیری شاخص ثانویه (درخت ) روی قیاس تساوی: این متد جستجو میتواند برای بازیابی ثبت تکی بکار رود چنانچه فیلد نمایهسازی (شاخصسازی) کلید باشد یا برای بازیابی ثبتهای متعدد بکار میرود چنانچه فیلد شاخصسازی کلید نباشد، این میتواند برای مقایساتی شامل یا بکار رود. در بخش 3. 4. 18، ما به چگونگی توسعه فرمولهایی میپردازیم که هزینهدستیابی این متدهای جستجو را در اصطلاحات تعداد دستیابیهای بلوک و زمان دستیابی برآورد میکند. Method S!برای هر فایلی استفاده میشود ولی تمام متدهای دیگر به داشتن مسیر دستیابی مناسب روی ویژگیبکار رفته در شرط انتخاب بستگی دارند. متدهای S4 و 6، میتوانند برای بازیابی ثبتها در دامنه معین بکار روند برای مثال پرس و جوها شامل این شرطها، پرس وجوهای دامنه نیامد به میشوند.متدهای جستجو برای انتخاب پیچیده: اگر شرط عملیات SELECT، شرط تقارنی و مرتبط باشد، در اینصورت اگر از چندین شرط ساده در ارتباط با ارتباط منطقی and مثل op4 فوق تشکیل شود، DBM میتواند از متدهای اضافی زیر برای اجرای عملیات استفاده کند: S7: انتخاب تقارنی یا ارتباطی با استفاده از شاخص اختصاص: اگر ویژگی شامل شده در هر شرط ساده متکی در شرط تقارنی، مسیر دستیابی داشته باشد که به کاربرد یکی از متدهای S2 تا S6 امکان عمل دهد، از آن شرط برای بازیابی ثبتهای استفاده کنید و بعد کنترل کنید آیا هر ثبت بازیابی شد، شرایط ساده باقیمانده در شرط تقارنی را برآورده میکند یا خیر. S8 : انتخاب تقارنی (ارتباطی) با استفاده از شاخص مرکب: اگر دو یا چند ویژگی در شرایط تساوی در شرط تفاوتی شامل شدند و شاخص مرکب در فیلدهای مرکب وجود داشته باشد، برای مثال اگر شاخص روی کلید مرکب (ESSN, PNO) در فایل Works ON برای OPS ایجاد شده باشد، می توان از شاخص مستقیماً اشاره کرد.
در این تحقیق ما به تکنیکهای بکار رفته توسط DMBS برای پردازش، بهینهسازی و اجرای پرس و جوهای سطح بالا میپردازیم. پرس و جوی بیان شده در زبان پرسو جوی سطح بالا مثل SQL ابتدا باید پویش و تجزیه . معتبر شود. پویشگر (اسکنر) علامت هر زبان، مثل لغات کلیدی SQL، اساس ویژگی، و اساس رابطه، را در متن پرس و جو شناسایی میکند، در عوض تجربه کننده، ساختار دستوری پرس و جو را برای تعیین اینکه آیا بر طبق قوانین دستوری زبان پرس و جو تدوین میشود یا خیر، چک میکند. پرس و جو باید همچنین معتبر شود، با چک کردن اینکه تمام اسامی رابطه و ویژگی معتبر هستند و اسامی معنیدار در طرح پایگاه اطلاعاتی ویژهای پرس و جو میشوند. نمونه داخلی پرس و جو ایجاد میشود، که تحت عنوان ساختار دادههای درختی بنام درخت پرس و جو میباشد. ارائه پرس و جو با استفاده از ساختار دادههای گراف بنام گراف پرس و جو نیز امکان پذیر است. DOMS باید استراتژی اجرایی برای بازیابی نتیجه پرس و جو از فایلهای پایگاه اطلاعاتی را هدایت کند. پرس و جو استراتژیهای اجرایی بسیاری دارد. و مرحلة انتخاب، مورد مناسبی برای پردازش پرس وجو تحت عنوان بهینهسازی پرس و جو شناخته شده است. تصویر 1، مراحل مختلف پردازش پرس و جوی سطح بالا را نشان میدهد. قطعه بر نامه بهینهساز پرس وجو، وظیفه ایجاد طرح اجرایی را بعهده دارد و ژنراتور (تولید کننده) که ، کد را برای اجرای آن طرح ایجاد میکند. پردازنده پایگاه اطلاعاتی زمان اجرا وظیفه اجرای که پرس و جو را بعهده دارد، خواه در وضعیت کامپایل شده یا تفسیر شده جهت ایجاد نتیجه پرس و جو. اگر خطای زمان اجرا نتیجه شود، پیام خطا توسط پایگاه اطلاعاتی زمان اجرا ایجاد میشود. اصطلاح بهینهسازی نام بی مسمایی است چون در بعضی موارد، طرح اجرایی انتخاب شده، استراتژی بهینه نمیباشد، آن فقط استراتژی کارآمد معقول برای اجرای پرس و جو است. یافتن استراتژی بهینه، ضامن صرف زمان زیادی است، بجز برای سادهترین پرس و جوها، ممکن است به اطلاعاتی روی چگونگی اجرای فایلها در فهرستهای فایلها، اطلاعاتی که ممکن است کاملاً در کاتالوگ DBMS در دسترس نباشد، نیاز باشد. از اینرو، برنامهریزی استراتژی اجرا ممکن است توصیف درستتری نسبت به بهینهسازی پرس و جو باشد. برای زبانهای پایگاه اطلاعاتی (دریایی) جهتیابی در سطح پایینتر در سیستمهای قانونی، مثل شبکه DML شبکهای یا MOML سلسله مراتبی، برنامه نویس باید، استراتی اجرای پذیرش و جو را انتخاب کند ضمن اینکه برنامه پایگاه اطلاعاتی را مینویسد. اگر DBMS فقط زیان جهتیابی را ارائه دهد. فرصت و نیاز محدودی برای بهینهسازی پرس وجوی وسیع توسط DBMS وجود دارد، در عوض به برنامه نویس قابلیت انتخاب استراتژی اجرایی بهینه ارائه میشود. بعبارت دیگر، زبان پرس و جو در سطح بالا، مثل SQL برای DBMSهای رابطهای یا OQL برای DBMSهای مقصد، در ماهیت تفریطیتر است. چون آنچه نتایج مورد نظر پرس و جو است بغیر از شناسایی جزئیات چگونگی بدست آمدن نتیجه، را تعیین میکند. بهینهسازی پرس و جو برای پرس و جوهایی ضروی است که در زبان پرس و جوی سطح بالا تعیین می شوند. ما روی توصیف بهینهسازی پرس و جو در زمینه ROBMS تمرکز میکنیم چون بسیاری از تکنیکهایی که توصیف می کنیم برای، برای ODBMSها تطبیق یافتهاند. DBMS رابطهای باید استراتژیهای اجرای پرس و جوی دیگری را ارزیابی کند و استراتژی بهینه یا کارآمد معقولی را انتخاب کند. هر DBMS ، تعدادی الگاریتم دسترسی به پایگاه اطلاعاتی کلی دارد که علامتهای رابطهای مثل SELECT یا JOIN یا ترکیبی از این عملیات ها را اجرا میکند. تنها استراتژیهای اجرایی که میتوانند توسط الگاریتمهای دسترسی DBMS اجرا شوند و برای طراحی پایگاه اطلاعاتی فیزیکی ویژه و پرس و جوی خاص بکار روند، میتوانند توسط قطعه برنامه بهینهسازی پرس و جو در نظر گرفته شوند. ما با بحث کلی چگونگی ترجمه پرس و جوهای SQL به پرس و جوهای جبری رابطهای و در بهینهشدن آنها کار را شروع میکنیم. بعد ما روی الگاریتمها برای اجرای عملیاتهای رابطهای در بخش 1802 بحث میکنیم. بدنبال این مطلب، بررسی از استراتژیهای بهینهسازی پرس و جو را ارائه میدهیم. دو تکنیک اصلی برای اجرای بهینهسازی پرس و جو وجود دارد. اولین تکنیک بر اساس قوانین ذهنی جهت ترتیب دادن عملیاتها در استراتژی اجرای پرس و جو میباشد. ذهن قانونی است که بخوبی در اکثر موارد عمل میکند ولی برای کار مناسب در هر مورد کنش تضمین نمیشود. قوانین عملیاتها را در درخت پرس وجو مجدداً ترتیب میدهند. دومین تکنیک شامل برآورد هزینه استراتژیهای اجرای متفاوت و انتخاب طرح اجرایی با پایینترین هزینه برآورد است. دو تکنیک معمولاً در بهینه ساز پرس و جو (باهم ترکیب میشوند) بهم ملحق میگردند. بررسی مختصری از عوامل در نظر گرفته شده در طول بهینهسازی پرس و جو در RDBMS بازرگانی ORACLL= را ارائه میدهیم. در بخش بعدی نوعی بهینهسازی پرس و جوی معنایی را ارائه میدهد که در آن محدودیتهای شناخته شده برای پرداختن به استراتژیهای اجرایی پرس و جوی کارآمد استفاده میشوند. 2 – ترجمه پرس و جوهای SQL به پرس و جوهای رابطهای: در عمل، SQL زبان پرس وجویی است که در اکثر RDBMS های بازرگانی استفاده میشود. پرس وجوی SQL ، ابتدا به عبارت جبری رابطهای توسعه یافته معادل، نمایانگر ساختار داروهای درخت پرس و جو، ترجمه میشود و بعد بهینهسازی میشود. پرس و جوهای SQL به بلوکهای پرس و جو تجزیه میشوند، که واحدهای اساسی را تشکیل میدهند که میتوانند به عملکردهای جبری ترجمه شوند و بهینهسازی شوند. بلوک پرس و جو شامل عبارت SELECT- FROM-WHERE تکی و بندهای Groop By و HAVING است چنانچه اینها بخشی از بلوک باشند. از اینرو، پرس و جوهای تو در تو در پرس و جو بعنوان بلوکهای پرس و جوی مجزا شناسایی میشوند. چون SQL شامل عملکردهای گروهی، مثل MAX ، COUNT,SUM میباشد، این عملگرها باید در پرس و جوی جبری توسعه یافتهای شامل شوند، همانطوریکه در بخش 705 توصیف شد. پرس و جوی SQL در رابطه EMPLOEE در تصویر 705 را در نظر بگیرید: این پرس و جو شامل، پرس و جوی فرعی تو در تو است و از اینرو به دو بلوک تجزیه میشود. بلوک درونی بدین صورت است: و بلوک بیرونی بدین صورت می باشد: که C نمایانگر نتیجه حاصله از بلوک درونی است. بلوک درونی به عبارت جبری رابطهای توسعه یافته زیر ترجمه شده است: و بلوک بیرونی به عبارت زیر ترجمه شده است: بهینهساز پرس و جو، طرح اجرایی را برای هر بلوک انتخاب میکند. ما باید اشاره کنیم به در مثال فوق، بلوک درونی نیاز به ارزیابی شدن دارد تنها زمانی که، حداکثرحقوقی که بعکار میرود که بعنوان ثابت C، توسط بلوک بیرونی استفاده میشود. ما اینرو پرس و جوی تودرتوی غیرمرتبط نامیدیم (در فصل 8). آن برای بهینهسازی پرس و جوهای تو در توی مرتبط پیچیدهتر، خیلی سختتر است، جایی که متغیر Tuple از بلوک بیرونی در بند WHERE در بلوک درونی ظاهر میشود. 1802- الگاریتم های انسانی برای اجرای عملیاتهای پرس و جو: RDBMS شامل الگاریتمهایی برای اجرای انواع مختلف عملیاتهای رابطهای است که میتوانند در استراتژی اجرای پرس و جو نمایان شوند، این عملیاتها شامل عملیاتهای جبری بیسیک (اصلی) و توسعه یافته مورد بحث در فصل 7 ، و در بسیاری موارد، الحاقاتی از این عملیاتها میباشد. برای هر یک از این عملیات ها یا الحاقی از عملیاتها، یک یا چند الگاریتم برای اجرای عملیاتها در دسترس قرار دارند. الگاریتم ممکن است فقط برای ساختارهای ذخیره خاص مسیرهای دستیابی بکار روند، در اینصورت ، تنها در صورتی استفاده میشود که فایل های موجود در عملیات شامل این مسیرهای دستیابی هستند. در این بخش، ما به الگاریتمهای نمونه بکار رفته برای اجرای SEKECT ، JOIN و دیگر عملیاتهای رابطهای میپردازیم. ما بحث مرتب کردن خارجی را در بخش 180201 آغاز میکنیم که در قلب عملیاتهای رابطهای قرار دارد که از استراتژیهای ادغام کردن به مرتب کردن استفاده میکند. بعد ما به الگاریتمهایی برای اجرای عملیات SELECT در بخش 180202 میپردازیم، به عملیات JOIN در بخش 180203 و عملیات PRIJECT و عملیاتهای مجموعه در بخش IE 1802 و عملیاتهای گروهی و جمعی در بخش 2 .2 . 18 میپردازیم. 1. 2. 18- مرتب کردن خارجی: مرتب کردن، یکی از الگاریتمهای اولیه بکار رفته در پردازش پرس و جو است. برای مثال، به هر وقت پرس و جوی SQL ، بعد ORDER BY را تعیین میکند، نتیجه پرس و جو باید مرتب گردد. مرتب کردن، مؤلفه کلیدی در الگاریتمهای مرتب کردن- ادغام کردن (مرتب-ادغام) بکار رفته برای Join و عملیاتهای دیگر، دور الگاریتمهای حذف کپی برای عملیات PROYECT است. ما روی بعضی از این الگاریتمها در بخش 3. 2. 18 و 4. 02 18 بحث خواهیم کرد. توجه کنید که مرتب کردن در صورتی که اجتناب میشود که شاخص مناسب برای امکان دسترسی مرتب شده به ثبتها وجود دارد. مرتب کردن خارجی به الگاریتمهای مرتب کردن اشاره میکند که برای فایل های بزرگ ثبت های ذخیره شده روی دیسک مناسب هستند که در حافظه اصلی، مثل اکثر فایل های پایگاه اطلاعاتی تناسب نمییابد. الگاریتم مرتب کردن خارجی نمونه از استراتژی مرتب- ادغام استفاده میکند، که با مرتب کردن- فایلهای فرعی کوچک بنام اجراها در فایل اصلی شروع میشود و بعد اجراها مرتب شده ادغام میشوند، فایلهای فرعی مرتب شده بزرگتری ایجاد میشوند که بترتیب ادغام میشوند. الگاریتم ادغام –مرتب، مثل دیگر الگاریتم های پایگاه اطلاعاتی به فاضی بافر در حافظه اصلی نیاز دارد، جایی که مرتب کردن واقعی و ادغام اجراها انجام می شود. الگاریتم اصلی (سیبک) شرح داده شده در تصویر 1802 ، شامل دو مرحله است: (1) فاز یا مرحله مرتب کردن و (2) مرحله ادغام.در مرحله مرتب کردن، اجراهای فایلی که میتواند در فضای باز موجود تناسب یابد در حافظه اصلی خوانده میشوند و با استفاده از الگاریتم مرتب کردن داخلی مرتب میشود عقب دیسک بعنوان فایلهای فرعی مرتب شده متوفی نوشته میشود. اندازه اجرا و تعداد اجراهای آغازین توسط تعداد بلوکهای فایل (b) و فضای بافر موجود (NB) بیان میشود. برای مثال اگر بلوکو اندازه قایل 1024=b بلوک باشد، بعد یا 205 اجرای آغازین در هر اندازه 5 بلوک است. از اینرو، بعد از مرحله مرتب کردن، 205 اجرای مرتب شده بعنوان فایلهای فرعی موقتی روی دیسک ذخیره میشوند. اجرای مرتب شده بعنوان فایلهای فرعی موقتی و روی دیسک ذخیره میشوند. در مرحله ادغام شدن، اجراهای مرتب شده، در طول یک یا چند گذر ادغام میشوند. درجه ادغام شدن تعداد اجراهایی است که میتوانند با همدیگر در هر گذر ادغام شوند. در هر گذر، یک بلوک بافر، برای حفظ یک بلوک از هر اجرای ادغام شده نیاز میباشد، و یک بلوک برای تشکیل یک بلوک نتیجه ادغام لازم است . از اینرو، کوچکتر از و است و تعداد گذرها، است. در مثالها، است. لذا، 205 اجرای مرتب شده آغازین در 25 تا در پایان اولیه گذر ادغام میشود: که بعد به 12، بعد 4 بعد یک اجرا ادغام میشوند، که بدین معنی است که چهارگذر لازم میباشد. حداقل از 2، عملکرد بدترین مورد الگاریتم را ارائه میدهد که بدین قرار است: اولین جمله، تعداد دسترسیهای بلوک برای مرحله مرتب سازی را نشان میدهد، چون هر بلوک فایل دو برابر دسترسی میشود، یکبار برای خواندن در حافظه، یکبار برای نوشتن ثبتها دیسک بعد از مرتب کردن. دومین جمله، تعداد دسترسیهای بلوک برای مرحله ادغام کردن را نشان میدهد، با فرض اینکه بدترین مورد از 2 وجود دارد. بطور کلی، ثبت وقایع در مبنای و عبارت برای تعداد دسترسیهای بلوک نوین قرار میشود: تصویر 1802- شرح الگاریتم ادغام – مرتب کردن برای مرتب کردن خارجی: 2. 2. 18- اجرا و پیادهسازی عملیات SELECT : تعداد Optionهایی ( انتخابها) برای اجرای عملیات SELECT وجود دارد، که بعضی به فایل دارای مسیرهای دستیابی خاص بستگی دارند و تنها برای انواع معین شرایط انتخاب بکار میرود. ما به الگاریتمهایی جهت اجرای SELECT در این بخش میپردازیم. ما از عملیاتهای زیر استفاده میکنیم که روی پایگاه اطلاعاتی رابطهای در تصویر 507 مشخص شده و بحث ما را روشن میسازد: متدهای جستجو برای انتخاب ساده: تعدادی الگاریتم های جستجو برای انتخاب ثبتها از فایل امکانپذیر میباشند، چون ثبتهای فایل نامیده می شوند، چون ثبتهای فایل را برای جستجو و بازیابی ثبتهایی که شرایط انتخاب را برآورده میسازند، پویش میکنند. اگر الگاریتم جستجو شامل کاربرد شاخص باشد، جستحوی شاخص پویش شاخص نامیده میشد. متدهای جستجوی زیر ( 1S تا s6 ) مثالهایی از الگاریتمهای جستجو هستند که میتوانند برای اجرای عملیات انتخاب بکار روند: - s1 : جستجوی خطی (روش برنامهسازی پر قدرت): بازیابی هر ثبت در فایل، و تست اینکه آیا مقادیر ویژگی آن، شرط انتخاب را براورده میسازد یا خیر. - S2: جستجوی بنیادی (دودویی): اگر شرط انخاب شامل قیاس تساوی روی ویژگی کلیدی باشد که روی آن فایل مرتب میشود، جستجوی بنیادی، که نسبت به جستجوی خطی کارآمدتر است، میتواند بکار رود. مثال OP1 است چنانچه ssn ، ویژگی کلیدی با شاخص اولیه( یا کلید hash) باشد، برای مثال، SNN-‘123456789’ در opt، شاخص اولیه یا کلید hosh) برای بازیابی ثبت استفاده میشود، توجه کنید که این شرط، ثبت تکی را بازیابی میکند. - S4: کاربرد شاخص اولیه برای بازیابی ثبتهای متعدد: اگر شرط انتخاب شدن قیاس تساوی روی ویژگی غیر کلیدی با شاخص خدشهسازی باشد، برای مثال در ، شاخص را برای بازیابی کل ثبتها در برآورده ساختن شرط، استفاده کنید. - S6: بکارگیری شاخص ثانویه (درخت ) روی قیاس تساوی: این متد جستجو میتواند برای بازیابی ثبت تکی بکار رود چنانچه فیلد نمایهسازی (شاخصسازی) کلید باشد یا برای بازیابی ثبتهای متعدد بکار میرود چنانچه فیلد شاخصسازی کلید نباشد، این میتواند برای مقایساتی شامل یا بکار رود. در بخش 3. 4. 18، ما به چگونگی توسعه فرمولهایی میپردازیم که هزینهدستیابی این متدهای جستجو را در اصطلاحات تعداد دستیابیهای بلوک و زمان دستیابی برآورد میکند. Method S!برای هر فایلی استفاده میشود ولی تمام متدهای دیگر به داشتن مسیر دستیابی مناسب روی ویژگیبکار رفته در شرط انتخاب بستگی دارند. متدهای S4 و 6، میتوانند برای بازیابی ثبتها در دامنه معین بکار روند برای مثال پرس و جوها شامل این شرطها، پرس وجوهای دامنه نیامد به میشوند.متدهای جستجو برای انتخاب پیچیده: اگر شرط عملیات SELECT، شرط تقارنی و مرتبط باشد، در اینصورت اگر از چندین شرط ساده در ارتباط با ارتباط منطقی and مثل op4 فوق تشکیل شود، DBM میتواند از متدهای اضافی زیر برای اجرای عملیات استفاده کند: S7: انتخاب تقارنی یا ارتباطی با استفاده از شاخص اختصاص: اگر ویژگی شامل شده در هر شرط ساده متکی در شرط تقارنی، مسیر دستیابی داشته باشد که به کاربرد یکی از متدهای S2 تا S6 امکان عمل دهد، از آن شرط برای بازیابی ثبتهای استفاده کنید و بعد کنترل کنید آیا هر ثبت بازیابی شد، شرایط ساده باقیمانده در شرط تقارنی را برآورده میکند یا خیر. S8 : انتخاب تقارنی (ارتباطی) با استفاده از شاخص مرکب: اگر دو یا چند ویژگی در شرایط تساوی در شرط تفاوتی شامل شدند و شاخص مرکب در فیلدهای مرکب وجود داشته باشد، برای مثال اگر شاخص روی کلید مرکب (ESSN, PNO) در فایل Works ON برای OPS ایجاد شده باشد، می توان از شاخص مستقیماً اشاره کرد.
دسته بندی | کامپیوتر و IT |
بازدید ها | 37 |
فرمت فایل | doc |
حجم فایل | 28 کیلو بایت |
تعداد صفحات فایل | 32 |
تحلیل الگوریتم شاخه و قید موازی آسنکرون
1- خلاصه:
در این مقاله توضیحی درباره کامپیوترهای موازی میدهیم و بعد الگوریتمهای موازی را بررسی میکنیم. ویژگیهای الگوریتم branch & bound را بیان میکنیم و الگوریتمهای b&b موازی را ارائه میدهیم و دستهای از الگوریتمهای b&b آسنکرون برای اجرا روی سیستم MIMD را توسعه میدهیم. سپس این الگوریتم را که توسط عناصر پردازشی ناهمگن اجرا شده است بررسی میکنیم.
نمادهای perfect parallel و achieved effiency را که بطور تجربی معیار مناسبی برای موازیسازی است معرفی میکنیم زیرا نمادهای قبلی speed up (تسریع) و efficiency (کارایی) توانایی کامل را برای اجرای واقعی الگوریتم موازی آسنکرون نداشتند. و نیز شرایی را فراهم کردیم که از آنومالیهایی که به جهت موازیسازی و آسنکرون بودن و یا عدم قطعیت باعث کاهش کارایی الگوریتم شده بود، جلوگیری کند.
2- معرفی:
همیشه نیاز به کامپیوترهای قدرتمند وجود داشته است. در مدل سنتی محاسبات، یک عنصر پردازشی منحصر تمام taskها را بصورت خطی (Seqventia) انجام میدهد. به جهت اجرای یک دستورالعمل داده بایستی از محل یک کامپیوتر به محل دیگری منتقل میشد، لذا نیاز هب کامپیوترهای قدرتمند اهمیت روز افزون پیدا کرد. یک مدل جدید از محاسبات توسعه داده شد، که در این مدل جدید چندین عنصر پردازشی در اجرای یک task واحد با هم همکاری میکنند. ایده اصل این مدل بر اساس تقسیم یک task به subtaskهای مستقل از یکدیگر است که میتوانند هر کدام بصورت parallel (موازی) اجرا شوند. این نوع از کامپیوتر را کامپیوتر موازی گویند.
تا زمانیکه این امکان وجود داشته باشد که یک task را به زیر taskهایی تقسیم کنیم که اندازه بزرگترین زیر task همچنان به گونهای باشد که باز هم بتوان آنرا کاهش داد و البته تا زمانیکه عناصر پردازشی کافی برای اجرای این sub task ها بطور موازی وجود داشته باشد، قدرت محاسبه یک کامپیوتر موازی نامحدود است. اما در عمل این دو شرط بطور کامل برقرار نمیشوند:
اولاً: این امکان وجود ندارد که هر taskی را بطور دلخواه به تعدادی زیر taskهای مستقل تقسیم کنیم. چون همواره تعدادی زیر task های وابسته وجود دارد که بایستی بطور خطی اجرا شوند. از اینرو زمان مورد نیاز برای اجرای یک task بطور موازی یک حد پایین دارد.
دوماً: هر کامپیوتر موازی که عملاً ساخته میشود شامل تعداد معینی عناصر پردازشی (Processing element) است. به محض آنکه تعداد taskها فراتر از تعداد عناصر پردازشی برود، بعضی از sub task ها بایستی بصورت خطی اجرا شوند و بعنوان یک فاکتور ثابت در تسریع کامپیوتر موازی تصور میشود.
الگوریتمهای B&B مسائل بهینه سازی گسسته را به روش تقسیم فضای حالت حل میکنند. در تمام این مقاله فرض بر این است که تمام مسائل بهینه سازی مسائل مینیمم کردن هستند و منظور از حل یک مسئله پیدا کردن یک حل ممکن با مقدار مینیمم است. اگر چندین حل وجود داشته باشد، مهم نیست کدامیک از آنها پیدا شده.
الگوریتم B&B یک مسئله را به زیر مسئلههای کوچکتر بوسیله تقسیم فضای حالت به زیر فضاهای (Subspace) کوچکتر، تجزیه میکند. هر زیر مسئله تولید شده یا حل است و یا ثابت میشود که به حل بهینه برای مسئله اصلی (Original) نمیانجامد و حذف میشود. اگر برای یک زیر مسئله هیچ کدام از این دو امکان بلافاصله استنباط نشود، آن زیر مسئله به زیرمسئلههای کوچکتر دوباره تجزیه میشود. این پروسه آنقدر ادامه پیدا میکند تا تمام زیر مسئلههای تولید شده یا حل شوند یا حذف شوند.
در الگوریتمهای B&B کار انجام شده در حین اجرا به شدت تحت تاثیر نمونه مسئله خاص قرار میگیرد. بدون انجام دادن اجرای واقعی الگوریتم این امکان وجود ندارد که تخمین درستی از کار انجام شده بدست آورد. علاوه برآن، روشی که کار باید سازماندهی شود بر روی کار انجام شده تاثیر میگذارد. هر گامی که در اجرای الگوریتم b&b ی موازی بطور موفقیتآمیزی انجام میشود و البته به دانشی است که تاکنون بدست آورده. لذا استفاده از استراتژی جستجوی متفاوت یا انشعاب دادن چندین زیر مسئله بطور موازی باعث بدست آمدن دانشی متفاوت میشود پس میتوان با ترتیب متفاوتی زیر مسئلهها را انشعاب داد.
دقت کنید که در یک بدل محاسبه خطی افزایش قدرت محاسبه فقط بر روی تسریع الگوریتم اثر میکند وگرنه کار انجام شده همچنان یکسان است.
با این حال اگر قدرت محاسبه یک کامپیوتر موازی با اضافه کردن عناصر پردازشی اضافه افزایش پیدا کند. اجرای الگوریتم b&b بطور آشکاری تغییر میکند (به عبارت دیگر ترتیبی که در آن زیر برنامهها انشعاب پیدا میکنند تغییر میکند). بنابراین حل مسائل بهینهسازی گسسته سرسع بوسیله یک کامپیوتر موازی نه تنها باعث افزایش قدرت محاسبه کامپیوتر موازی شده است بلکه باعث گسترش الگوریتمهای موازی نیز گشته است.
3- کامپیوترهای موازی (Parallel computers):
یکی از مدلهای اصلی محاسبات Control drivenmodel است، در این مدل کاربر باید صریحاً ترتیب انجام عملیات را مشخص کند و آن دسته از عملیاتی که باید به طور موازی اجرا شوند را تعیین کند. این مدل مستقل از عناصر پردازش به صورت زیر تقسیمبندی میشود:
- کامپیوترهای SISD، که یک عنصر پردازشی وجود دارد و توان انجام فقط یک عمل را در یک زمان دارد.
- کامپیوترهای MIMD، دارای چندین عنصر پردازشی هستند که بطور موازی دستورالعملهای متفاوت را روی دیتاهای متفاوت انجام میدهند.
- کامپیوترهای SIMD، همه عناصر پردازشیشان یک دستور یکسان را در یک زمان بر روی دادههای متفاوتی انجام میدهند. اگر چه امکان پنهان کردن عناصر پردازشی وجود دارد. عنصر پردازشی پنهان شده نتیجه عملی را که انجام داده ذخیره نمیکند.
سیستمهای SIMD بر اساس نحوه ارتباط و اتصال عناصر پردازشی به یکدیگر خود به بخشهایی تقسیم میشوند: اگر تمام عناصر پردازشی به یکدیگر متصل باشند و از طریق یک حافظه مشترک ارتباط داشته باشند، به آن tightly coupled system گویند.
و اگر عناصر پردازش حافظه مشترک نداشته باشند اما از طریق شبکهای بهم متصل باشند و بروش message passing با هم ارتباط داشته باشند، به آن loosely coupled system گویند.
حافظه مشترک در tightly coupled system ها هم نقطه قوت و هم نقطه ضعف این سیستمها است. امکان به اشتراک گذاشتن راحت و سریع اطلاعات بین عناصر پردازشی مختلف را فراهم میکند. ارتباط به عملیات ساده read و wite روی حافظه مشترک خلاصه میشود و هر عنصر پردازشی مستقیماً با دیگر عناصر پردازشی ارتباط برقرار میکند. با این حال، اگر تعداد عناصر پردازشی متصل به حافظه مشترک افزایش یابد، حافظه مشترک تبدیل به گلوگاه (Bottleneck) میشود.
بنابراین تعداد عناصر پردازشی در یک سیستم tightly coupled محدود است. به جهت اینکه تمام عناصر پردازشی بایستی به ان حافظه مشترک متصل باشند، این سیستمها بصورت کامل از پیش ساخته هستند و امکان اضافه کردن عناصر پردازش به سیستم وجود ندارد.
از طرف دیگر، ارتباط در یک سیستم loosely coupled کند و آهسته است. تبادل پیامها نیاز به زمانی بیش از زمان لازم برای نوشتن یا خواندن از یک حافظه مشترک دارد. این امکان هم وجود دارد که یک عنصر پردازش مستقیماً به عنصر پردازش دیگر که قصد ارتباط دارد متصل نباشد.
در مقابل compactness بودن سیستمهای tightly coupled ، عناصر پردازشی در یک سیستم loosely coupled میتوانند در تمام نقاط توزیع شوند. لذا فاصله فیزیکی که یک پیام باید طی کند، بیشتر میشود. به جهت این حقیقت که عناصر پردازشی برای ارتباط در یک شبکه از یک پروتکل استفاده میکنند، lossely coupled system میتوانند شامل انواع مختلفی از عناصر پردازشی باشند. امکان اضافه کردن عناصر پردازشی اضافهتری به سیستم وجود دارد. در حالت کلی عناصر پردازشی خودشان یک کامپیوتر کاملی هستند.
مثالی از سیستمهای loosely coupled، Distributed Processing utilities Package است که بعداُ به تفضیل درباره آنها توضیح میدهیم.
4- الگوریتمهای موازی (Parallel Algorithm):
یک الگوریتم موازی شامل sub taskهایی است که باید انجام شود. بعضی از این sub taskها بصورت موازی اجرا میشوند، اما گاهی sub taskهایی هم وجود دارد که باید بصورت خطی اجرا شوند. اجرای هر sub task توسط یک پروسس مجزا انجام میشود. از ویژگیهای مهم یک الگوریتم موازی نحوه محاوره این پروسسها، سنکرون بودن و قطعی بودن الگوریتم است. دو پروسس با یکدیگر محاوره (interact) دارند، اگر خروجی یکی از آندو پروسس ورودی دیگری باشد. نحوه محاوره دو پروسس میتواند بطور کامل مشخص شده باشد یا نباشد. اگر مشخص شده باشد، این دو پروسس فقط زمانی میتوانند ارتباط داشته باشند که هر دو مایل به انجام ارتباط باشند. اگر گیرنده هنوز آماده ارتباط نباشد، فرستنده نمیتواند اقدامی انجام دهد.
در حین اجرای یک الگوریتم سنکرون تمام پروسسها باید قبل از محاوره با یکدیگر همزمان شوند. سنکرون شدن در اینجا یعنی قبل از آغاز subtask جدید، آنها باید منتظر کامل شدن عمل دیگر پروسسها باشند. وقتی یک الگوریتم آسنکرون اجرا میشود، پروسسها لازم نیست که منتظر یکدیگر شوند تا taskهایشان را تمام کنند. البته این امکان وجود دارد که یک الگوریتم آسنکرون تا حدی سنکرون شود.
یک الگوریتم قطعی است اگر هر بار که الگوریتم بر روی ورودی مشابه اجرا شود، نتیجه اجرا یکسان باشد. یعنی دستورالعملهای مشابه به ترتیب مشابه انجام شود. بنابراین اجراهای متوالی از یک الگوریتم همیشه خروجی یکسان دارد در حالیکه در الگوریتمهای غیر قطعی یک تصمیم یکسان خروجیهای متفاوتی دارد. مثلاً خروجی یک تصمیم ممکن است و البته به فاکتورهای محیطی معینی باشد که توسط الگوریتم کنترل نمیشود. از اینرو اجراهای پیدر پی یک الگوریتم غیر قطعی، خروجیهای متفاوت تولید میکند.
دسته بندی | کامپیوتر و IT |
بازدید ها | 18 |
فرمت فایل | doc |
حجم فایل | 25 کیلو بایت |
تعداد صفحات فایل | 20 |
حافظه RAM
آنچه در این فصل می آموزید:
/ کنترل میزان مصرف حافظه در سیستم
/ اجرای برنامه های ارزیابی و سنجش حافظه
/نمایش اطلاعات حافظة ویندوز به کمک برنامة Sandra
/ آماده شدن برای ارتقا حافظة سیستم
/ عیب یابی نصب حافظه در سیستم
/ حذف کاربرد حافظة بسط یافته و حافظة توسعه یافته در محیط ویندوز
/ کنترل مقدار فیزیکی مصرف RAM در محیط ویندوز
قبل از اینکه Cpu بتواند برنامهها را اجرا کند، دستورات و اطلاعات آن برنامه باید داخل حافظة Ram کامپیوتر منتقل و مستقر شوند. در این فصل روش نگهداری اطلاعات در حافظة Ram را می آموزید و اینکه چرا اطلاعات داخل حافظة Ram فرار هستند ( یعنی با قطع برق یا خاموش شدن کامپیوتر همة اطلاعات موجود در این حافظه از بین می روند)، و اینکه چرا انواع حافظة Ram عرضه شده اند.
بر روی وب یا داخل مجلات و بروشورها و کتابهای کامپیوتر اغلب توصیه های مطالعه می کنید که مقدار لازم حافظة Ram برای سیستم شما را اعلام می کنند. اغلب اعلام می شود که حداقل 126 تا 512 مگابایت حافظة Ram برای عملکرد مناسب یک سیستم لازم است.
داخل کامپیوترهای شخصی از دیسکها برای نگهداری دایمی و بلند مدت اطلاعات استفاده میکنیم. اطلاعات داخل دیسک سخت از طریق مغناطیس نمودن سطح دیسک انجام میگیرد. به دلیل روش مغناطیسی ذخیرة اطلاعات در دیسک سخت
(در مقابل روش الکترونیکی ) این وسیله قابلیت نگهداری دایمی و بلند مدت اطلاعات را دارد و با قطع برق یا خاموش شدن سیستم اطلاعات مستقردر دیسک از بین نرفته و ماندگار هستند چون دیسک سخت برای نگهداری اطلاعاات نیاز به جریان برق دایمی ندارد. اما حافظة Ram اطلاعات را بطور موقت نگهداری می کند بدیهی است که با قطع برق یا خاموش شدن سیستم این اطلاعات از بین خواهند رفت.
فنآوریهای گوناگون برای ذخیرهسازی اطلعات ابداع شدهاند که اغلب آنها را بر اساس سرعت، هزینه و ظرفیت ذخیره سازی طبقهبندی میکنند. معمولاً دیسکها وسایل مکانیکی هستند و به همین دلیل سرعت عملیات آنها نسبت به انواع حافظههای الکترونیکی بسیار کندتر است. در شکل زیر نمایی از اواع وسایل ذخیرهسازی و در سمت راست کندترین وسیلة ذخیرهسازی را نشان دادهایم.
جریان اطلاعات از حافظة RAM به پردازنده (CPU)
هرگاه Cpu برای اجرای عملیات به اطلاعات یا دستوری نیاز داشته باشد ابتدا آنها را داخل حافظه میانجی L1 جستجو میکند. اگر اطلاعات مورد نیاز را آنجا پیدا نکند به سراغ حافظه میانجی L2 خواهد رفت. اگر اطلاعات مورد نیاز را آنجا هم پیدا نکند پس Cpu باید نشانی آدرس آن اطلاعات را از طریق گذرگاه سیستم به حافظه Ram ارسال نماید. درخواست اطلاعات از Cpu باندا به تراشة کنترل کنندة حافظه میرسد.
کنترل کنندة حافظه از آدرس رسیده استفاده میکند و اطلاعات یا دستور مورد نیاز Cpu را پیدا میکند. پس از اینکه کنترل کنندة حافظه این اطلاعات را پیدا می کند آن را از طریق گذرگاه سیستم به Cpu ارسال میکند.
انجام مراحل فوق نیاز به زمان دارند. در سیستم های جدید به منظور افزایش کارایی سیستم از روشهایی استفاده می کنند تا تاخیر زمانی درخواست و دریافت اطلاعات را کاهش دهند.
سازماندهی حافظة RAM توسط کامپیوترهای شخصی
در حافظة Ram اطلاعات ( Data ) و دستوراتی ( Instructions ) ذخیره می شوند که Cpu برای اجرای عملیات به آنها نیاز دارد. می دانید که هر برنامه شامل دستوراتی است که به زبان صفر و یک ها نوشته شده ( یا ترجمه شده) اند. بنابراین در حافظة Ram نیز اطلاعات به شکل صصفرها و یک ها ذخیره می شوند. می توانید حافظة Ram را به شکل چند ردیف از مکانهای ذخیره سازی تصور نمایید.
برنامه نویسان تصور دیگری از حافظة Ram دارند.
آنها مجموعه بیت ها را در یک « لغت» ( Word) گروه بندی می کنند. به همین دلیل پردازنده هایی که از گذرگاه اطلاعات 32 بیتی استفاده می کنند در واقع از لغات 32 بیتی استفاده می کنند. پردازنده هایی که از گذرگاه اطلاعات 64 بیتی استفاده می کنند از بغات 64 بیتی استفاده می کنند. اما در پشت صحنه واقعیت این است که برنامه ها می توانند به بایت های انفرادی داخل حافظة Ram دسترسی داشته باشند. در شکل زیر نمایی از ساختار حافظة Ram را مشاهده می کنید که مکان هر بایت یک آدرس منحصربه فرد دارد. Cpu برای بازخوانی اطلاعات از حافظه Ram یا ثبت اطلاعات رد حافظة Ram باید آدرس مکانهای ذخیره سازی در این حافظه را بداند.
در فصل 12 جزییات مربوط به تبادل اطلاعات از طریق گذرگاه های کامپیوتر بین تراشه ها را می آموزید. هر گاه سیستم (System bus ) ارتباط بین حافظة Ram و Cpu را برقرار نمودده و شامل سیستم هایی است که اطلاعات بر روی آنها حرکت می کنند. تعداد بیت های موجود در گذرگاه آدرس مشخص کنندة مقدار حافظه ای هستند که کامپیوتر شخصی می تواند به آنها دسترسی داشته باشد. به عنوان مثال اگر در یک سیستم از گذرگاه آدرس 32 بیتی استفاده شود پس 232 یعنی 4 گیگابایت را می توان آدرس دهی نمود.
یا در یک سیستم که از گذرگاه آدرس 64 بیتی استفاده می شود پس 264 9551616، 737، 18446744 خانة حافظه را می توان آدرس دهی نمود.