دسته بندی | برق |
بازدید ها | 21 |
فرمت فایل | doc |
حجم فایل | 1911 کیلو بایت |
تعداد صفحات فایل | 118 |
در تاسیسات الکتریکی مانند شبکه انتقال انرژی ٍ مولد ها و ترانسفورماتورها و اسباب و ادوات دیگر برقی در اثر نقصان عایق بندی و یا ضعف استقامت الکتریکی ٍ دینامیکی و مکانیکی در مقابل فشارهای ضربه ای پیش بینی نشده و همچنین در اثر ازدیاد بیش از حد مجاز درجه حرارت ٍ خطاهایی پدید می آید که اغلب موجب قطع انرژی الکتریکی می گردد.
این خطاها ممکن است بصورت اتصال کوتاه ٍ اتصال زمین ٍ پارگی و قطع شدگی هادی ها و خورده شدن و شکستن عایق ها و غیره ظاهر شود.
شبکه برق باید طوری طرح ریزی شود که از یک پایداری و ثبات قابل قبول و تا حد امکان مطمئنی برخوردار باشد.امروزه قطع شدن برق برای مدت کوتاهی باعث مختل شدن زندگی فردی و قطع شدن برق کارخانه های صنعتی و مصرف کننده های بزرگ ٍ موسسه های علمی و پژوهشی به مدت نسبتاٌٌٌ طولانی موجب زیانهای جبران ناپذیر می شود لذا قطع شدن و یا قطع کردن دستگاهها و تجهیزات الکتریکی معیوب از شبکه لازم است ولی کافی نیست.
باید تدابیری بکار برده شود که برق مصرف کننده ای که در اثر بوجود آمدن عیب فنی از شبکه قطع شده است در کوتاه ترین مدت ممکنه مجدداٌ تامین گردد.
وظیفه رله این است که در موقع پیش آمدن خطا در محلی از شبکه برق ٍ متوجه خطا شود ٍ آنرا دریابد و شدت آنرا بسنجد و دستگاههای خبری را آماده کند و یا در صورت لزوم خود راساٌ اقدام کند و سبب قطع مدار الکتریکی شود.
در این نوشته سعی شده است رله های حفاظتی پیلوتی ٍ اساس کار آنها و همچنین طریقه ارسال اطلاعات در این رله ها مورد بررسی قرار گیرد.در شش فصل اول از آوردن عکس و مطلب در مورد رله های واقعی پرهیز شده است در فصل هشتم رله های مربوط به حفاظت پیلوتی پستهای اختصاصی مترومورد بررسی قرار گرفته است.
فهرست مطالب
مقدمه 5
فصل اول : فلسفه رلهگذاری حفاظتی 6
1-1) رلهگذاری حفاظتی چیست؟ 7
2-1) وظیفه رلهگذاری حفاظتی 9
3-1) اصول رلهگذاری حفاظتی 9
4-1) حفاظت در مقابل دیگر حالتهای غیرعادی 13
فصل دوم : انواع رله 14
1-2) انواع رله برحسب مورد استعمال 15
2-2) انواع رله بر مبنای کمیت اندازهگیری شده 17
فصل سوم : حفاظت تفاضلی21
1-3) انواع سیستمهای حفاظت تفاضلی 22
2-3) عوامل موثر در طراحی 25
3-3) تجهیزات کمکی 29
1-3-3) رلههای چککننده یا راهاندازی 29
2-3-3) تجهیزات نظارت پیلوت 30
4-3) روشهای انتقال اطلاعات درحفاظت 32
5-3) منحنی مشخصه ایدهآل طرحهای حفاظت تفاضلی توسط سیم پیلوت 33
فصل چهارم : رلههای پیلوتی سیمی 34
مقدمه 34
1-4) مزیت پیلوت 34
2-4) پیلوتهای قطعکننده و سدکننده 35
3-4) رلهگذاری پیلوتی سیمی با جریان مستقیم 36
4-4) رلهگذاری پیلوتی سیمی با جریان متناوب 37
5-4) برتری دستگاههای پیلوتی سیمی از نوع جریان متناوب بر جریان مستقیم 41
6-4) محدودیتهای دستگاههای پیلوتی سیمی با جریان متناوب 41
7-4) مراقبت از مدارهای پیلوتی سیمی 41
8-4) قطع از راه دور با سیمهای پیلوت 42
9-4) مشخصات موردنیاز برای سیم پیلوت 42
10-4) سیمهای پیلوت و حفاظت آنها در مقابل اضافه ولتاژ 42
فصل پنجم : رله های پیلوتی با جریان کاریر و میکرو موج 44
مقدمه 45
1-5) پیلوت با جریان کاریر 45
2-5) پیلوت میکروموج 46
3-5) رلهگذاری مقایسه فاز 46
4-5) رلهگذاری مقایسه سو 50
فصل ششم : حفاظت خط با رلههای پیلوتی 53
مقدمه 54
1-6) رلهگذاری با پیلوت سیمی 54
2-6) رلهگذاری با پیلوت جریا، کاریر 54
3-6) میکروموج 56
1-3-6) کانال میکروموج 61
2-3-6) قطع از راه دور 61
فصل هفتم : رلههای حفاظتی در پستهای فشارقوی 63
مقدمه 64
1-7) ضرورت اتصال به زمین – نوتر 64
2-7) ضرورت برقراری حفاظت 65
3-7) انواع سیستمهای اورکارنتی 65
4-7) رلههای ولتاژی 69
5-7) حفاظت فیدرکوپلاژ 20 کیلوولت 69
6-7) حفاظت فیدرترانس 20 کیلوولت 69
7-7) حفاظت REF 69
8-7) رله دیفرانسیل 70
1-8-7) چند نکته در مورد رله دیفرانسیل 70
2-8-7) رله دیفرانسیل با بالانس ولتاژی 72
9-7) حفاظت جریانی برای ترانسفورماتور 75
10-7) حفاظت باسبار 75
11-7) حفاظت خط 77
12-7) رله دوباره وصلکن 80
13-7) Synchron-check 82
14-7) سیستم inter lock , inter trip 82
فصل هشتم: حفاظت پیلوتی پستهای اختصاصی متروی تهران 85
مقدمه 86
1-8) مشخصات رله حفاظتی سیم پیلوت MBCI 89
2-8) حفاظت دیفرانسیل فیدر 90
3-8) رله ناظر MRTP 93
4-8) رله نشاندهنده جریان آنی ترانسفورماتور MCTH 95
5-8) رله جریان زیاد لحظهای و استارت MCR 7 9
6-8) رله تشخیص بیثباتی و قطع داخلی MVTW 9 9
7-8) ترانسفورماتور جداکننده 103
8-8) ولتاژ و جریان پیلوت 103
9-8) ستینگهای خطا برای فیدرهای معمولی 104
10-8) عملکرد مینیمم برای خطاهای زمین با بار سرتاسری 105
11-8) ترتیبات سوئیچ گیرهای نوع شبکهای 106
12-8) ولتاژ تحریک شده ماکزیمم مسیر بسته پیلوت 107
13-8) اطلاعات فنی رله MBCI 108
منابع 109
دسته بندی | مکانیک |
بازدید ها | 18 |
فرمت فایل | doc |
حجم فایل | 9727 کیلو بایت |
تعداد صفحات فایل | 133 |
هدف از این تحقیق مقایسه تحلیل تئوری و نتایج تجربی حاصل از تست عملی بر روی یک کلکتور خورشیدی صفحه تخت، با توجه به شرایط آب و هوایی شهر تهران میباشد. به این منظور ابتدا یک کلکتور صفحه تخت از نظر ساختمان، بازده و سایر پارامترها بر طبق روابط انتقال حرارت بهصورت تئوری مدل شده، پس از آن با استفاده از یک سیستم آبگرمکن خورشیدی و استفاده از یک کلکتور صفحه تخت به عنوان جاذب انرژی خورشید، دادههای مورد نیاز به طور تجربی استخراج شدهاند.
سیستم آبگرمکن خورشیدی مورد آزمایش که در مرکز تحقیقات انرژی خورشیدی دانشگاه آزاد اسلامی واحد تهران جنوب مستقر است، و بر اساس استاندارد ISO 9806-1مدل شدهاست، از یک کلکتور صفحه تخت و یک مخزن ذخیره تشکیل شدهاست. کلکتور شامل دو هدر افقی به قطر داخلی mm12 و 12 عدد رایزر عمودی میباشد که بهصورت موازی قرار گرفتهاند. صفحات جاذب از فین های مجزا تشکیل شدهاند. جنس فین ها از آلومینیوم بوده و از شیشه معمولی به ضخامت mm4 به عنوان پوشش صفحه جاذب برای جلوگیری از اتلافات جابجایی و تابشی استفاده شدهاست. از آنجایی که آزمونها در فصل تابستان انجام شدهاست و دمای هوا در هنگام شب به گونهای نیست که باعث یخزدگی آب داخل کلکتور شود، به این جهت تنها از آب (بدون ضد یخ) به عنوان سیال انتقال حرارت استفاده شدهاست. همچنین دمای محیط، میزان تابش روی سطح کلکتور صفحه تخت و سرعت باد محوطه مورد آزمایش توسط یک دستگاه ثبت کننده اطلاعات ثبت شدهاند.
بازده و انرژی مفید کسب شده توسط کلکتور بهصورت تجربی با مقادیر حاصل از مدل تئوری مقایسه شده و بر طبق نتایج بهدست آمده مدل تجربی با مدل تئوری مطابقت خوبی دارد. آزمایشات فوق با دبیهای مختلف انجام گرفت و با کاهش دبی سیال عبوری از کلکتور، افزایش در انرژی مفید کسب شده و بازده کلکتور مشاهده گردید. بر اساس آزمایشات انجام شده، حداکثر بازده ممکن برای یک کلکتور خورشیدی صفحه تخت زمانی حاصل میشود که حتی الامکان دمای آب ورودی کلکتور به دمای هوای محیط نزدیک باشد. همچنین عوامل تاثیر گذار بر بازده یک کلکتور خورشیدی صفحه تخت، از جمله فاصله بین رایزرها، نوع پوشش شیشهای کلکتور، ضخامت عایق حرارتی، جنس عایق، نوع سیال انتقال حرارت و... مورد بررسی و تحلیل قرار گرفته و با توجه به مقایسه های انجام شده میتوان نمودارهای مفیدی پیرامون بازده کلکتور بر اساس پارامترهای تاثیرگذار رسم نمود. این نمودارها علاوه بر استفاده در صنعت ساخت تجهیزات خورشیدی، میتواند به عنوان راهنما جهت تست سایر کلکتورهای مشابه مورد استفاده قرار گیرد.
فهرست مطالب
چکیده 1 |
||||
مقدمه 2 |
||||
فصل اول : کلیات |
||||
° 1-1) مقدمه |
||||
° 1-2) تاریخچه |
||||
° 1-3) کاربردهای انرژی خورشیدی |
||||
فصل دوم : انواع کلکتور خورشیدی و بررسی استانداردهای مربوطه |
||||
° 2-1) مقدمه |
||||
° 2-2) کلکتورهای صفحه تخت |
||||
° 2-2-1) صفحه جاذب |
||||
° 2-2-2) صفحات پوششی یا جداری |
||||
° 2-2-3) محفظه کلکتور |
||||
° 2-3) کلکتور لوله خلاء |
||||
° 2-4) کلکتور سهموی |
||||
° 2-5) زاویه شیب کلکتور خورشیدی |
||||
° 2-6) مقایسه استاندارهای تست کلکتورهای تخت خورشیدی 9806-1ISO، EN 12975-2 و ASHRAE 93 |
||||
° 2-6-1) استاندارد ASHRAE 93 |
||||
° 2-6-1-1) تست ثابت زمانی- τ |
||||
° 2-6-1-2) تست بازده حرارتی -gη |
||||
° 2-6-1-3) تست اصلاح کننده زاویه تابش - Kθb(θ) |
||||
° 2-6-1-4) توزیع دمای ورودی به کلکتور برای تست بازده حرارتی |
||||
فهرست مطالب |
||||
° |
||||
° 2-6-1-5) مدت زمان انجام تست |
||||
° 2-6-2) استاندارد ISO 9806-1 و EN 12975-2 |
||||
° 2-6-2-1) تست ثابت زمانی- τ |
||||
° 2-6-2-2) تست بازده حرارتی -gη |
||||
° 2-6-2-3) تست اصلاح کننده زاویه تابش - Kθb(θ) |
||||
° 2-6-2-4) توزیع دمای ورودی به کلکتور برای تست بازده حرارتی |
||||
° 2-6-2-5) روش تست شبه دینامیکی استاندارد EN12975-2 |
||||
° 2-7) مقایسه استاندارد ها |
||||
فصل سوم : آبگرمکنهای خورشیدی و بررسی استانداردهای مربوطه |
||||
3-1) مقدمه |
||||
3-2) اجزای آبگرمکن خورشیدی |
||||
3-3) شرح دستگاه آبگرمکن خورشیدی |
||||
3-4) انواع آبگرمکنهای خورشیدی |
||||
° 3-4-1) سیستم گردش اجباری |
||||
° 3-4-1-1) سیستم گردش اجباری- مدار بسته |
||||
° 3-4-1-2) سیستم گردش اجباری- مدار باز |
||||
° 3-4-2) سیستم با گردش طبیعی |
||||
° 3-4-2-1) سیستم گردش طبیعی- ترموسیفون- مدار باز |
||||
° 3-4-2-2) سیستم گردش طبیعی- ترموسیفون- مدار بسته |
||||
3-5) بررسی و مقایسه استانداردهای آبگرمکن خورشیدی |
||||
° 3-5-1) استاندارد ISO 9459 |
||||
° 3-5-1-1) استانداردهای راندمان ( عملکرد ) سیستم |
||||
° 3-5-1-2) روش آزمون بر اساس تست در فضای داخلی |
||||
° 3-5-1-3) آزمون در فضای خارج برای سیستمهای فقط خورشیدی |
||||
° 3-5-1-4) آزمون در فضای خارجی برای سیستمهای آبگرمکن خورشیدی با گرمکن کمکی با یک مخزن ذخیره |
||||
° 3-5-2) استانداردهای اروپایی برای سیستمهای گرمایش خورشیدی |
||||
° 3-5-2-1) استانداردهای اروپایی جدید |
||||
° 3-5-2-2) روشهای تست برای سیستمهای آبگرمکنهای خورشیدی ( EN 12976-2و ENV 12977-2) |
||||
° 3-5-3) استاندارد ASHRAE 95 |
||||
° 3-5-4) مقایسه استانداردهای تست آبگرمکن خورشیدی |
||||
° 3-5-4-1) مقایسه سه استاندارد9459-2 ISO ، ISO 9459-3و ASHRAE 95 |
||||
فصل چهارم : معادلات حاکم بر تعیین عملکرد کلکتورهای صفحه تخت و حل نمونه عددی |
||||
4-1) مقدمه |
||||
4-2) تابش خورشیدی |
||||
4-3) تشعشع جذب شده و عبور تشعشع از میان پوشش شیشهای |
||||
° 4-3-1) انعکاس تشعشع |
||||
° 4-3-2) جذب پوشش شیشهای |
||||
° 4-3-3) حاصلضرب ضریب های عبور – جذب ( ) |
||||
4-4) کلکتورهای صفحه تخت و معادلات مربوطه |
||||
° 4-4-1) انرژی مفید |
||||
° 4-4-2) توزیع دما در کلکتورهای صفحه تخت خورشیدی |
||||
° 4-4-3) ضریب انتقال گرمای کل یک کلکتور |
||||
° 4-4-4) توزیع دما بین لولهها و ضریب بازدهی کلکتور |
||||
° 4-4-4-1) لوله در زیر صفحه جاذب |
||||
° 4-4-4-2) لوله در بالای صفحه جاذب |
||||
° 4-4-4-3) لوله در وسط صفحه جاذب |
||||
° 4-4-5) ضریب دفع گرمای کلکتور و ضریب جریان |
||||
4-5) تست کلکتور |
||||
° 4-5-1) بازده |
||||
4-6) حل عددی |
||||
4-7) مشخصات تجهیزات مورد استفاده |
||||
4-8) مشخصات فنی کلکتور صفحه تخت |
||||
4-9) حل معادلات برای یک حالت نمونه |
||||
فصل پنجم : آزمایش، نتایج و ترسیم نمودارهای مربوطه |
||||
° 5-1) مقدمه |
||||
° 5-2) روش انجام آزمایش |
||||
° 5-3) نتایج |
||||
° 5-4) نمودارها و تحلیل |
||||
° 5-4-1) نمودارهای دادههای هواشناسی |
||||
° 5-4-2) تغییرات دمای خروجی از کلکتور بر حسب تغییرات دبی |
||||
° 5-4-3) بررسی انرژی دریافتی مدل تئوری و تجربی |
||||
° 5-4-4) بررسی بازده کلکتور در مدلهای تئوری و تجربی |
||||
° 5-4-5) نمودارهای افت دما در مسیر آب ورودی |
||||
° 5-5) بررسی اثر پارامترهای مختلف |
||||
° 5-5-1) تاثیر موقعیت قرارگیری لوله و صفحه جاذب |
||||
° 5-5-2) تاثیر زاویه کلکتور خورشیدی |
||||
° 5-5-3) تاثیر تعداد شیشههای محافظ کلکتور |
||||
° 5-5-4) تاثیر فاصله بین رایزرهای صفحه جاذب بر بازده کلکتور |
||||
° 5-5-5) تاثیر پوشش صفحه جاذب بر بازده کلکتور |
||||
° 5-5-6) تاثیر ضخامت عایق حرارتی بر بازده کلکتور |
||||
° 5-5-7) تاثیر جنس عایق بر بازده کلکتور |
||||
° 5-5-8) تاثیر نوع سیال انتقال حرارت بر بازده کلکتور |
||||
° 5-5-9) تاثیر فشار گاز داخل کلکتور بر بازده |
||||
نتیجه گیری |
||||
پیشنهادات برای ادامه طرح |
||||
منابع و ماخذ |
||||
فهرست منابع فارسی |
||||
فهرست منابع لاتین |
||||
چکیده انگلیسی |
فهرست جدول ها
عنوان |
شماره صفحه |
2-1- شرایط تست شبه دینامیکی |
19 |
2-2- دمای متوسط سیال و شرایط آب و هوایی برای هر نوع روز |
20 |
2-3- بیشترین دمای خروجی بر اساس نوع کلکتور |
20 |
2-4- مقایسه حدود مجاز پارامترهای مختلف جهت دستیابی به شرایط یکنواخت در سه استاندارد |
21 |
2-5- شرایط آب و هوایی لازم در سه استاندارد |
21 |
2-6- شرایط زمانی بازه داده و پیش بازه داده برای تست در حالت کلکتور ساکن |
22 |
3-1- تشابه پارامترهای تست آبگرمکن خورشیدی در ISO 9459-2، ISO 9459-3 ، ASHRAE 95 |
36 |
3-2- تفاوتهای پارامترهای تست آبگرمکن خورشیدی در ISO 9459-2 ، ISO 9459-3، ASHRAE 95 |
36 |
4-1- مشخصات فنی کلکتور مورد آزمایش، ساخت شرکت دریا |
64 |
4-2 - پارامترهای موثر جهت حل یک نمونه عددی |
65 |
5-1 - مقادیر محاسبه شده با دبی 200 لیتر بر ساعت |
70 |
5-2 - مقادیر محاسبه شده با دبی 150 لیتر بر ساعت |
71 |
5-3 - مقادیر محاسبه شده با دبی 100 لیتر بر ساعت |
71 |
فهرست شکلها
عنوان |
شماره صفحه |
2-1- کارکرد کلکتور صفحه تخت در حالت کلی
8 |
|
2-2 - کلکتور صفحه تخت به همراه اجزای آن |
9 |
2-3 - صفحه جاذب |
10 |
2-4 - فرآیند حرارتی یک کلکتور صفحه تخت |
11 |
2-5 - کلکتورتخت، مایع و هوایی |
12 |
2-6 - کلکتور لولهای تحت خلاء |
13 |
2-7 - انواع کلکتورهای تحت خلاء |
14 |
2-8 - کلکتور سهموی |
14 |
2-9 - زاویه کلکتور خورشیدی |
15 |
3-1- طرح سادهای از یک آبگرمکن خورشیدی |
25 |
3-2- طرح کلی یک آبگرمکن خورشیدی به همراه قسمتهای مختلف آن |
26 |
3-3- سیستم اجباری- مدار بسته |
28 |
3-4- سیستم اجباری- مدار باز |
28 |
3-5- آبگرمکن با سیستم ترموسیفون |
29 |
3-6- سیستم گردش طبیعی- ترموسیفون- مدار باز |
30 |
3-7- سیستم گردش طبیعی- ترموسیفون- مدار بسته |
30 |
4-1- زوایای تابش و انعکاس در محیطی با ضریب شکست های و |
40 |
4-2- عبور از یک پوشش شیشهای غیر جاذب |
41 |
4-3- جذب تابش خورشید توسط صفحه جاذب زیر شبکه پوشش شیشهای |
42 |
4-4- برش عمودی از یک گردآورنده خورشیدی |
43 |
4-5- توزیع دمای صفحه جاذب |
44 |
4-6- شبکه گرمایی یک گردآورنده صفحه تخت با یک پوشش شیشهای |
46 |
4-7- شبکه گرمایی معادل |
46 |
4-8- a- ترکیب لوله و صفحه جاذب |
48 |
4-8-b,c- معادله انرژی صفحه جاذب |
49 |
4-9- مقاومتهای ایجاد شده در مقابل جریان گرما به سیال در حالتیکه لوله در زیر صفحه جاذب باشد |
52 |
4-10- نحوه اتصال لوله و صفحه جاذب در حالتیکه لوله در زیر صفحه جاذب باشد |
52 |
4-11- نحوه اتصال لوله و صفحه جاذب در حالتیکه لوله در بالای صفحه جاذب باشد |
54 |
4-12- مقاومتهای ایجاد شده در مقابل جریان گرما به سیال در حالتیکه لوله در بالای صفحه جاذب باشد |
54 |
4-13- نحوه اتصال لوله و صفحه جاذب در حالتیکه لوله در وسط صفحه جاذب باشد |
56 |
4-14- مقاومتهای ایجاد شده در مقابل جریان گرما به سیال در حالتیکه لوله در وسط صفحه جاذب باشد |
56 |
4-15- پیرانومتر و دما سنج نصب شده در سایت تست |
60 |
4-16- باد سنج و ثبت کننده اطلاعات |
60 |
4-17- باد سنج، ثبت کننده اطلاعات و مخزن ذخیره |
61 |
4-18- سنسور دما و نمایشگر دیجیتالی |
62 |
4-19- پمپ و مانومتر |
62 |
4-20- شیر کنترل کننده دبی و کلکتور صفحه تخت |
63 |
4-21- نمای کلی از تجهیزات نصب شده در سایت تست دانشگاه آزاد اسلامی تهران جنوب |
63 |
5-1- دادههای ثبت شده توسط ایستگاه هواشناسی در روز 8 آگوست 2011 |
72 |
5-2- دمای هوا و میزان تشعشع در روز 8 آگوست 2011 برای نقاط داده برداری شده |
72 |
5-3- دمای ورودی و خروجی در حالتهای تئوری و تجربی با دبی آب 200 لیتر بر ساعت |
73 |
5-4- دمای ورودی و خروجی در حالتهای تئوری و تجربی با دبی آب 150 لیتر بر ساعت |
73 |
5-5- دمای ورودی و خروجی در حالتهای تئوری و تجربی با دبی آب 100 لیتر بر ساعت |
74 |
5-6- میزان خطای اطلاعات ثبت شده از سایت تست |
74 |
5-7- اختلاف دمای ورودی و خروجی برای دبیهای مختلف |
75 |
5-8- انرژی دریافتی در مدل تئوری و تجربی با دبی آب 200 لیتر بر ساعت |
76 |
5-9- انرژی دریافتی در مدل تئوری و تجربی با دبی آب 150 لیتر بر ساعت |
76 |
5-10- انرژی دریافتی در مدل تئوری و تجربی با دبی آب 100 لیتر بر ساعت |
77 |
5-11- انرژی دریافتی در مدل تئوری و تجربی با دبیهای آب گذرنده مختلف |
77 |
5-12- مقدار انرژی کسب شده توسط کلکتور صفحه تخت |
78 |
5-13- مقایسه حرارت اندازهگیری شده و مورد انتظار برای کلکتور با دبی 200 لیتر بر ساعت |
79 |
5-14- مقایسه حرارت اندازهگیری شده و مورد انتظار برای کلکتور با دبی 150 لیتر بر ساعت |
79 |
5-15- مقایسه حرارت اندازهگیری شده و مورد انتظار برای کلکتور با دبی 100 لیتر بر ساعت |
79 |
5-16- بازده مدل تئوری و تجربی با دبی آب گذرنده 200 لیتر بر ساعت |
80 |
5-17- بازده مدل تئوری و تجربی با دبی آب گذرنده 150 لیتر بر ساعت |
81 |
5-18- بازده مدل تئوری و تجربی با دبی آب گذرنده 100 لیتر بر ساعت |
81 |
5-19- مقایسه بازده مدل تئوری و تجربی با دبیهای آب گذرنده متفاوت |
82 |
5-20- مقایسه مقادیر تئوری و تجربی بازده کلکتور |
82 |
5-21- افت دمای مسیر مخزن تا ورودی کلکتور با دبی 200 لیتر بر ساعت |
83 |
5-22- افت دمای مسیر مخزن تا ورودی کلکتور با دبی 150 لیتر بر ساعت |
83 |
5-23- افت دمای مسیر مخزن تا ورودی کلکتور با دبی 100 لیتر بر ساعت |
84 |
5-24- انرژی دریافتی کلکتور صفحه تخت با توجه به موقعیت قرار گیری لوله و صفحه جاذب |
85 |
5-25- انرژی دریافتی کلکتور صفحه تخت با توجه به زاویه کلکتور با سطح زمین |
86 |
5-26- انرژی دریافتی کلکتور صفحه تخت با تعداد کاورهای شیشهای کلکتور |
86 |
5-27- بازده کلکتور صفحه تخت با توجه به فاصله بین رایزرهای صفحه جاذب |
87 |
5-28- بازده کلکتور صفحه تخت با توجه به ضریب نشر کاور شیشهای کلکتور |
88 |
5-29- نمودارهای بازده کلکتور خورشیدی برای ضخامتهای مختلف عایق حرارتی |
88 |
5-30- اثر جنس عایق بر بازده کلکتور خورشیدی |
89 |
5-31- اثر نوع سیال انتقال حرارت بر بازده کلکتور خورشیدی |
89 |
5-32- اثر فشار گاز داخل کلکتور بر بازده |
90 |
دسته بندی | اقتصاد |
بازدید ها | 11 |
فرمت فایل | doc |
حجم فایل | 67 کیلو بایت |
تعداد صفحات فایل | 105 |
تعاون و همکاری به دلیل اینکه انسان موجودی بالطبع اجتماعی بوده، از آغاز پیدایش بشر تاکنون در بین افراد وجود داشته است و به عبارت دیگر تعاون پایه و اساس زندگی اجتماعی بشر بوده است. در اصطلا لغوی تعاون به معنای همکاری و تشریک مساعی افراد برای رفع نیازهای همگانی و مشترک خود می باشد « بنابرین ما تعاون و تعاونی را هم در کشورهای سوسیالیستی و هم در کشورهای سرمایه داری ملاحظه میکنیم. هر چند که در کشورهای سرمایه داری تعاونیها نسبت به کشورهای سوسیالیستی و کشور ما ایران گسترش قابل توجهی یافته اند. و ما شاهد این هستیم که در کشورهای سرمایه داری فکر تعاون از اعضای تشکیل دهنده و شرکتهای تعاونی الهام گرفته و دولت فقط نقش نظارت و هدایت کنندگی را برای تعاونی ها ایفا می کند و این شرکتها نشئت گرفته از احتیاجات آزاد و منافع مشترک و کمک متقابل انسانها با یکدیگر می باشد.
اما در کشورهای سوسیالیستی کسانی که در رأس حکومت قرار دارند افراد را وادار به کارهای اشتراکی می کنند و در این کشورها به دلیل مساعد نبودن شرایط لازم نیروی قابل ملاحظه ای از طرف دستگا حاکم اجتماع باید صرف به کار انداختن چرخ های تعاون گردد و این کار آنقدر ادامه می یابد که افراد به مرور زمان خودشان تعاون را درک کنند و پاسداری از آن را به عهده بگیرند.
فهرست مطالب
مقدمه : ۲
فرضیات تحقیق ۷
اهداف تحقیق: ۹
تعریف مفاهیم و واژه های مهم تحقیق: ۱۳
بیان مشکلات و تنگناهای تحقیق: ۱۷
عملکرد تعاونیها : ۱۷
کارکردهای فرهنگی تعاونی ها : ۲۳
تاریخچه تحولات شرکت تعاونی تهیه و توزیع فروشندگان لوازم الکتریکی: ۳۲
عملکرد اقتصادی تعاون : ۴۶
ارائه راهکار و پیشنهادات : ۷۰
مسائل و مشکلا زنان در مشارکت در تعاونی و اداره امور آنها: ۷۲
ئت ۷۴
بررسی عملکرد اجتماعی شرکتهای تعاونی: ۸۷
منابع و مأخذ ۱۰۲