دسته بندی | برق |
فرمت فایل | zip |
حجم فایل | 11742 کیلو بایت |
تعداد صفحات فایل | 61 |
عنوان لاتین مقاله:
عنوان فارسی مقاله:
پروژه : کنترل سیستم تبدیل انرژی باد مجهز به DFIG برای اصلاح ضریب توان با حفظ ماکزیمم توان اکتیو تولیدی
1- چکیده
هدف این مقاله بهبود جبران توان راکتیو و قابلیت فیلترینگ اکتیو یک سیستم تبدیل انرژی باد (WECS) می باشداستراتژی در ابتدا کنترل کانورتر سمت رتور( RSC)برای بدست آوردن ماکزیمم توان تحت نوسان باد می باشد . سپس با توجه به توان نامی RSC کیفیت توان با جبران توان راکتیو وهارمونیک های جریان شبکه که به بارهای غیر خطی وابسته هستند بهبود می یابد
هدف اصلی استراتژی کنترلی پیشنهاد شده عملکرد RSC در ظرفیت کامل و بدون اضافه بار به منظور جبران توان راکتیو و قابلیت فیلترینگ اکتیو می باشد
دیگر کانورتر سمت شبکه ( GSC) به شکلی کنترل می شود که یک ولتاژ DC صاف و جریان سینوسی در سمت شبکه تضمین شود .
2- توصیف و مدل سازی سیستم تبدیل انرژی باد
گزارش کار
فصل اول: مروری بر توربین های بادی
1- مقدمه..................................................3
2- انواع توربین های بادی...........................8
3- خصوصیات استاتیکی.............................8
4- اجزای نیروگاه بادی...............................10
5- انواع مختلف توربین های سرعت متغیر.............11
فصل دوم : کنترل سیستم تبدیل انرژی باد مجهز به DFIG برای اصلاح ضریب توان با حفظ ماکزیمم توان اکتیو تولیدی
1- مقدمه ............................................19
2- توصیف و مدل سازی سیستم تبدیل انرژی باد...............19
3- نتایج شبیه سازی................................31
4.نتیجه گیری..........................................34
مراجع.....................................................30
فصل اول: مروری بر توربین های بادی
1- مقدمه
تاریخ استفاده از انرژی باد به دوران باستان بر می گردد، هنگامی که ازآن برای حرکت کشتی های بادی در دریا استفاده می شده است. کاربرد بیشتر انرژی باد از ایران سرچشمه گرفته است، که از آن برای آسیاب گندم استفاده می شده است. بعد از فتح ایران توسط اعراب، این تکنولوژی به مناطق در اختیار اعراب و چین منتقل شد. در اروپا، توربین های بادی در قرن یازدهم میلادی ساخته شد و بعد از دو قرن به یک وسیله بسیار مهم تبدیل شد. اولین ت وربین بادی برای تولید انرژی الکتریکی توسط چارلز براش[1] که تحقیقات آن بر عهده لاکور دردانمارک بود در کلیولند[2] اوهایو[3] آمریکا ساخته شد. این توربین دارای 144 پره بود تا استحکام بیشتری پیدا کند، با سرعت کمی می چرخید و دارای گیر بکس بود. قطر این توربین3/18 متر و ارتفاع مرکز توربین از سطح زمین 8/16 متر و کل وزن آن 40 تن توان آن 12 کیلو وات بود و نوع ژنراتور آن dc بود که از سال 1888 تا 1900 انرژی الکتریکی عمارت چارلز براش را تامین می کرد. با وجود این که باد رایگان بود، اما به خاطر هزینه بالای سرمایه گذاری و نگهداری آن، در سال 1900 کار آن متوقف شد و انرژی الکتریکی مورد نیاز عمارت بزرگ براش از شبکه کلیولند تامین شد. در سال 1939 ، ساخت ژنراتور های بادی بزرگ در ورمونت[4] آمریکا آغاز شد . توان نامی این ژنراتورها 3/1 مگا وات در سرعت بادm/s 15بود و قطر توربین به 53 متر می رسید . در سال 1941 تغذیه مستقیم شبکه قدرت به صورت سنکرون انجام گرفت اما به خاطر نقص در طراحی پره ها در سال 1945 کار آن متوقف شد. بعد از جنگ جهانی دوم، به خاطر ارزان شدن قیمت نفت، تحقیقات زیادی روی انرژی های جایگزین که انرژی باد نیز شامل آن بود، صورت نگرفت. تا اینکه در سال 1973 به خاطر بحران نفتی، علاقه زیادی در استفاده از انرژی های جایگزین به خصوص انرژی باد ایجاد شد و بودجه های سرمایه گذاری های زیادی را به خود اختصاص داد که منجر به تاسیس مزارع بادی[5] شد . ماشین های اولیه به کار رفته در این مزارع، از لحاظ عملکرد مایوس کننده بود و قیمت نگهداری از آن ها هم بالا بود. به طور مثال در اوایل دهه 80 میلادی، هزینه هر kw/h1 انرژی الکتریکی بادی 25 سنت بود. ولی امروزه هزینه هر kw/h1 انرژی الکتریکی بادی به کمتر از 5 سنت رسیده است. [1]
عواملی که باعث شده تا امروزه تولید برق از انرژی باد از لحاظ اقتصادی قابل رقابت باشد موارد زیر است[2]
1- مشوقها و کمک های ایالتی
2- رشد صنایع بادی که بازده آیرودینامیکی توربین های خودرا بهبود داده اند.
3- پیشرفت ادوات الکترونیک قدرت و روشهای کنترل جدید برای توربین های سرعت متغیر که اجازه می دهند عملکرد توربین بادی بهینه باشد.
در کنار مسایل اقتصادی، نیروگاه های بادی از نظر زیست محیطی نیز قابل رقابت با انواع نیروگاه های رایج هستند که از جمله می توان به موارد زیر اشاره کرد:
1- نیروگاه های بادی گاز co2 و یا گازهای سمی دیگری تولید نمی کنند.
2- عملکرد نیرو گاه های بادی هیچ گونه پس ماند و فاضلابی مانند نیروگاه های اتمی ایجاد نمی کند.
3- در مکان هایی که مزارع بادی قرار دارند می توان به طور هم زمان از آن مکان ها استفاده های دیگری مانند کشاورزی کرد.
یکی از مزایای مهم اقتصادی انرژی باد این است که در آن هزینه سوخت وجود ندارد و از طرفی باعث صرفه جویی در ذخایر نفتی می شود. این مزیت چنان قابل توجه است که می تواند به سادگی افزایش سهم انرژی باد در تأمین انرژی الکتریکی در بیشتر کشور های دنیا را توجیه کند. تقریبا75 درصد از کل هزینه مربوط به افزایش قیمت انرژی باد مربوط به افزایش قیمت در توربین، سازه و پی سازی و تجهیزات الکتریکی است در حالی که 40 تا 70 درصد از هزینه نیرو گاه هایی که با سوخت فسیلی کار می کنند مربوط به سوخت و بهره برداری و تعمیرات است. [3]
تکنولوژی سیستم تبدیل انرژی بادی دردو دهه اخیر تغییرات زیادی پیداکرده است. توسعه و رشد انرژی بادی بر اساس سه هدف اصلی زیر آغاز شد:[4]
1- به دست آوردن انرژی ارزان قیمت با بازده بالا و قابلیت اطمینان بالا
2- به دست اّوردن کیفیت توان بهتر واتصال به شبکه بهتر
3- مقبولیت عمومی(کاهش سروصدا و اثرات زیست محیطی)
اجزای اصلی سیستم توربین بادی شامل: روتور توربین، گیربکس، ژنراتور، ترانسفورمر و در صورت امکان مبدل الکترونیک قدرت می باشد که در شکل (1) نشان داده شده است.
شکل(1) اجزای اصلی سیستم توربین بادی
[1] Charles Brush
[2] Cleveland
[3] Ohio
[4] Vermont
[5] Wind Farm
دسته بندی | برق |
فرمت فایل | zip |
حجم فایل | 1047 کیلو بایت |
تعداد صفحات فایل | 21 |
عنوان لاتین مقاله: MODELING AND CONTROL OF DOUBLY FED INDUCTION GENERATOR FOR WIND POWER
عنوان فارسی مقاله: پروژهی درس طراحی و عملکرد نیروگاههای کوچک با موضوع مدل سازی و کنترل ژنراتور الفایی دوتحریکه برای انرژی باد
فهرست
1- مقدمه.. 3
2- مدل ژنراتور االقایی دوتحریکه DFIG.. 4
3- شماتیک کنترل برداری پیشنهادی DFIG.. 8
3- 1- کنترل کننده RSC برمبنای کنترل بردار شار استاتور.. 9
3-2- کنترل کننده RSC براساس کنترل برداری شار روتور.. 13
4- بحث ها و نتایج شبیه سازی.. 16
5- ضمیمه.. 19
1- مقدمه
به دلیل افزایش نگرانی ها در مورد آلودگی های CO2، سیستم های انرژی باد در سال های اخیر توجه زیادی را به خود جلب کرده اند. مزرعه های بادی بزرگ در سرتاسر جهان نصب شده و یا در حال طراحی هستند و رتبه انرژی باد(به صورت تکی و یا مزرعه ای) در حال افزایش است. به صورت معمول برای هر مزرعه بادی، توربین های بادی برپایه ژنراتورهای تکنولوژی ([1]DFIG) با مبدل هایی با توان حدود 25 تا 30 درصد توان نامی ژنراتور به کار برده می شوند. در مقایسه با توربین های بادی که از ژنراتورهای القایی با سرعت ثابت استفاده میکنند، توربین های بادی برپایه DFIG دارای مزایایی از جمله عملکرد سرعت متغیر و قابلیت توان راکتیو و اکتیو چهار ربعی می باشند. این سیستم ها همچنین دارای هزینه کمتر و تلفات کمتر مبدل ها در مقایسه با سیستم های برپایه ژنراتورهای سنکرون تمام تحریک با مبدل های با توان برابر توان نامی ژنراتور میباشند. DFIG اساسا یک ماشین القایی روتور سیم پیچی شده استاندارد میباشد که استاتور مستقیما به شبکه متصل است و اتصال روتور و شبکه از طریق مبدل با مدولاسیون پهنای باند(PWM)[2] پشت به پشت میباشد. یک دیاگرام شماتیکی ساده شده DFIG براساس سیستم تولید انرژ باد در شکل 1 نشان داده شده است.. این پروژه مدل سازی وکنترل DFIG را با جزییات ارائه میکند، که استاتور مستقیما به شبکه متصل است و روتور از طریق مبدل AC-DC-AC پشت به پشت[3] دوطرفه به شبکه متصل شده است. مدل پیشنهادی تنها مدل سیمولینکی با جزییات کامل می باشد که از جعبه ابزار[4] semi-Power system استفاده نمیکند و برای کار در مد عملکردی زیرسنکرون و فوق سنکرون مناسب است. در این پروژه یک استراتژی کنترلی برداری براساس کنترل بردار جهت شار روتور پیشنهاد شده است . دو استراتژی کنترل بردار غیرمستقیم براساس تخمین شار استاتور و تخمین شار روتور به مبدل سمت روتور (RSC[5]) برای کنترل توان اکتیو تولید شده توسط ژنراتور اعمال شده اند. سیستم کامل در محیط سیمولینک متلب مدلسازی و شبیه سازی شده است ، این محیط برای مدلسازی همهی انواع ساختارهای ژنراتورهای القایی مناسب می باشند.
شکل 1- ساختار سیستم تبدیل انرژی باد DFIG با استفاده از مبدل پشت به پشت
2- مدل ژنراتور االقایی دوتحریکه DFIG
مدار معادل دینامیکی یا d-q ماشین القایی در شکل 2 نشان داده شده است.براساس مدار معادل، روابط اصلی مدلسازی ژنراتور القایی دوتحریکه در قالب شار پیوندی به صورت زیر به دست میآید :
[1] Doubly Fed Induction Generator
[2] pulse width modulation
[3] Back-to-back
[4] toolbox
[5] rotor side converter
دسته بندی | برق |
فرمت فایل | zip |
حجم فایل | 3033 کیلو بایت |
تعداد صفحات فایل | 30 |
عنوان لاتین مقاله: Low-Cost Semi-Z-source Inverter for Single-Phase
عنوان فارسی مقاله: اینورتر نیمه منبع امپدانسی تک فاز با هزینه پایین برای سیستم های فوتو ولتاییک
پروژه درسی الکترونیک قدرت 2
این مقاله دارای شبیه سازی و گزارشکار کامل می باشد
فهرست
مقدمه.......................................2
تفاوتها.......................................4
معرفی چند توپولوژی.......................................5
اینورتر نیمه منبع امپدانسی و نیمه شبه منبع امپدانسی.................7
طرز کار اینورتر نیمه شبه منبع امپدانسی.......................................8
مدولاسیون اینورترهای نیمه شبه منبع امپدانسی و مقایسه با منبع امپدانسی معمولی..........................................11
استرس ولتاژ تجهیزات و طراحی المان ها.............................................................13
بسط توپولوژی به دو فاز و سه فاز.......................................19
شبیه سازی و نتایج.......................................21
راندمان.......................................27
نتیجه گیری.......................................28
منابع..........................29
مقدمه
در سالهای اخیر با توجه به بحران انرژی، استفاده از منابع انرژی تولید پراکنده (DG) تجدید پذیر مانند توربین بادی، سلول خورشیدی و پیل سوختی در کاربرد های صنعتی و خانگی رایج تر شده است.
از آنجایی که خیلی از منابع تولید پراکنده تجدید پذیر مانند سلول فوتوولتاییک، پیل سوختی و ... فقط ولتاژ DC تولید میکنند، برای اتصال به شبکه به یک اینورتر رابط نیاز داریم. اینورترها از لحاظ ایزولاسیون به دو نوع ایزوله شده و ایزوله نشده تقسیم می شوند. اینورتر های ایزوله شده معمولا از یک ترانس فرکانس بالا برای ایزولاسیون استفاده می کنند. این نوع اینورترها سه توپولوژی رایج دارند که در اینجا به این جزئیات نمی پردازیم فقط ذکر این نکته مهم است که توپولوژی های ترانس ایزوله شده دارای مزایایی مثل گین ولتاژ بالا و ایمنی بالا هستند و عیب آنها این است که از تعداد سویچ بیشتر با قیمت بالاتر استفاده می کنند و همچنین پیچیدگی انها بیشتر و راندمان شان پایین تر است.
در بعضی از کشورها ایزولاسیون الکتریکی در شبکه های ولتاژ پایین یا توان های پایین تر از 20kw نیاز نیست. این موضوع منجر به گسترش اینورتر های بدون ترانس با قیمت پایین میشود.
اینورتر های بدون ترانس به دو دسته تقسیم می شوند
1-توپولوژی های دوطبقه:
این توپولوژی های بدون ترانس دارای یک کانورتر dc-dc در طبقه اول و یک اینورتر تمام پل در طبقه دوم هستند. این گروه از لحاظ کاری شبیه اینورتر های ترانس ایزوله هستند با این تفاوت که تلفات سویچینگ کمتر و قیمت پایین تری دارند.
2-توپولوژی های یک طبقه
برای اینکه پیچیدگی سیستم را کمتر کنیم و همچنین قیمت را کاهش دهیم به اینورتر های یک طبقه رسیدیم. اینورتر های یک طبقه معمولا شامل دو مبدل نسبتا مستقل با تعدادی المان پسیو هستند که هرکدام یک نیم سیکل از شکل موج سینوسی را تولید می کند. اگر منبع dc و شبکه ( مخصوصا برای سیستم فوتوولتاییک ) زمین یکسانی نداشته باشند، منبع dc ورودی جریان نشتی خواهد داشت که باعث مشکلات امنیتی و تداخلات الکترومغناطیسی می شود. برای حل این مشکل یا سویچ های اضافی در مدار به کار می بریم، که ناچارا موجب پیچیدگی سیستم و افزایش قیمت می شود، و یا از توپولوژی که در آن بار و منبع زمین یکسانی[1] دارند استفاده میکنیم. بنابراین به خاطر مسائل و ملاحظات امنیتی، قیمت و سادگی سیستم در کاربرد های تولید پراکنده تجدید پذیر برای اتصال به شبکه، اینورتر های ایزوله نشده زمین مشترک ترجیح داده می شوند.
تفاوتها
تفاوت اینورتر منبع امپدانسی با اینورتر های معمول این است که اینورتر های منبع امپدانسی با اضافه کردن یک مدار LC به جای حالت صفر در کلیدزنی اینورتر های مرسوم یک حالت shoot-through اضافه می شود که این مدار LC یک گین افزایشی در ولتاژ خروجی به ما می دهد. بر اساس روش های مختلف قرار گیری shoot-through انواع مختلف مدولاسیون pwm برای کنترل مبدل منبع امپدانسی به دست می آید.
و اما تفاوت اینورتر حاضر با اینورترهای منبع امپدانسی دیگر این است که شبکه امپدانسی اینجا در طرف ac است و در نتیجه اندازه آن کوچکتر است با اینکه فرم مشابهی دارند. تفاوت دیگر در مدولاسیون آنهاست. در اینورتر های منبع امپدانسی معمول از یک موج مرجع سینوسی و یک حالت shoot-through اضافی برای تولید شکل موج خروجی سینوسی و داشتن گین افزایشی استفاده میکردیم در حالی که اینجا برای به دست اوردن خروجی سینوسی از منحنی گین ولتاژ غیر خطی برای به دست اوردن موج مرجع استفاده میکنیم که به آن سیگنال مرجع اصلاح شده می گوییم. این تفاوتها باعث شد تا ما نام اینورتر نیمه منبع امپدانسی[2] را به آنها اختصاص دهیم تا آن را از بقیه اینورتر ها جدا کنیم.
معرفی چند توپولوژی
شکل های 3 و 4 چند توپولوژی از کانورتر های نیمه منبع امپدانسی و نیمه شبه منبع امپدانسی را نشان می دهند که ورودی و خروجی زمین یکسانی دارند و شکل 5 منحنی گین ولتاژ آنها را نشان می دهد. می بینیم که شکل 5-a منحنی پیوسته ای دارد پس برای اینورتر بودن مناسب است.
شکل1. کانورتر های dc-dc. نیمه منبع امپدانسی و نیمه شبه منبع امپدانسی با گین ولتاژ ناپیوسته
[1] doubly grounded
[2] semi- z-source