دسته بندی | عمران |
فرمت فایل | doc |
حجم فایل | 1311 کیلو بایت |
تعداد صفحات فایل | 20 |
ترجمه مقاله ساختار سرامیک همراه با متن لاتین در 20 صفحه ورد قابل ویرایش
ساختار Biepitaxid، پیوند josephson و SQUIDs : ساختار و ویژگیهای اتصال یا پیوند josephson و SQUIDs، yBCo/CeO2/Mgo Biepitaxid را بررسی و گزارش کردیم، در اینجا CeO2 به عنوان یک لایه استفاده شده تا یک محدوده یا مرز Biepitaxid برای بلور یا ذره ایجاد کند. سطوح تابکاری نشده لایه CeO2 و سطح تابکاری شده آن توسط میکروسکوپ اتر یا (AFM) بررسی شدند. دمای مقاومت لایه نازک yBCo/CeO2/Mgo نشان میدهد که فرآیند تابکاری برای لایه CeO2 به منظور ایجاد لایه فیلم YBCo با کیفیت خوب ضروری است. منحنی ولتاژ جریان اتصال یا پیوند josephson عملکرد مربوط به مقاومت اتصال (RSJ) را نشان میدهد. بعلاوه هر دو مرحله عددی یا انتگرال و یا نیمه انتگرال Shapiro در میدان مغناطیسی بکاربرده شده صفر مشاهده شد نوسان ولتاژ مغناطیسی مدولی شده نیز برای SQUIDs دیده میشود.
1- مقدمه: بدلیل توسعه و پیشرفت مدارهای مجتمع ابررسانا، High-T، اتصالات ابررسانای josephson به شکل گستردهای مورد بررسی و آزمایش واقع شدند. به منظور بدست آوردن اتصالات josephson قابل کنترل و قابل دستیابی به انواع مختلف اتصالات مانند محدوده دارای لبه پلهای، SNS یا اساس و پایه bicrystaf استفاده شد. بهرحال این نوع مرزها معمولاً طی زمان ساخت با فرآیندهای بسیار زیادی درگیر هستند. برای سادهتر کردن فرآیند ساخت، اتصالات josephson محدوده دانه Biepitaxid مورد بررسی واقع شد. در این کار، CeCo2 انتخاب شد تا یک لایه برای محدوده ذره Biepitaxid باشد و روش ساده و شیمیایی حکاکی بجای فرزکاری آهن استفاده شد تا باعث جدا شدن نیمی از لایه CeCo2 از پایه Mgo شود.
SQUIDs و اتصالات josephson Biepitaxid را ساختیم. بعضی از ویژگیهای جریان ولتاژ برای اتصالات josephson و SQUIDs مورد بررسی واقع شد. همچنین نوسان ولتاژ تقسیم شده در میدان مغناطیسی برای SQUIDs نیز بررسی شد.
2- شرح تجربی و آزمایشی: یک سیستم آبکاری فلز مغناطیسی rf خارج از محور برای جدا کردن تمام لایهها در این مبحث استفاده شده است. CeCo2 در دمای OC750 برروی سطح Mgo که با یک لایه (yBCo)800 A-thick پوشیده شده، آبکاری شد. سپس لایه yBCo / CeCo2 با استفاده از اسید هیدروکلریک جدا شد. بعد از آن، این پایه و اساس در دمای OC1100 به مدت 10 ساعت تابکاری شد. برای بررسی تغییرات سطح CeCo2، ساختار سطحی لایههای CeCo2 تابکاری شده و تابکاری نشده با میکروسکوپهای (AFM) بررسی شدند و سپس یک لایه (yBCo)2000 A-thick برروی سطح تابکاری شده قرار داده شد، رسوبگذاری شده بعلاوه لایه نازک yBCo با یک محدوده یا مرز Biepitaxid توسط فتولیتوگرافی در یک اتصال josephson با 5pm پهنا یا SQUIDs با یک ناحیه سوراخ 40*20 و پهنای اتصال بصورت طرح و نقش قرار داده شد. برای بررسی واکنشهای میکرو ویوی اتصال، یک میکرو ویو با استفاده از آنتن دیود به این اتصال تابانده شد. برای بررسی نوسان بخش بخش میدان مغناطیسی، SQUID برروی یک سولئوئید که دارای میدان مغناطیسی موازی با سطح SQUID بود نصف شد. یک روش معمولی چهارمرحلهای برای اندازهگیری و بخش الکتریکی استفاده شد. معیار برای جریان اصلی در این مبحث بود.
شکل 1- مقاومت دمای لایه نازک yBCo برروی a، سطح Mgo، b، سطح تابکاری نشده Mgo / CeCo2.
3- بحث و نتیجهگیری: بخ منظور تأیید ویژگی خوب و مناسب لایه نازک yBCo ، مقاومت دمائی لایه نازک yBCo برروی پایه Mgo و لایه CeCo2 تابکاری نشده همانند شکل 1 اندازهگیری شد. لایه yBCo برروی پایه Mgo عملکرد ابررسانایی با نشان میدهد. بهرحال لایه yBCo برروی لایه CeCo2 تابکاری نشده مقاومت نیمه رسانایی با افت دمای حدود k82 را نشان میدهد. این مقاومت نیمه رسانایی ممکن است بدلیل عنوان شده در زیر باشد. ابتدا، ترکیب yBCo تغییر میکند، تا برروی لایه CeCo2 تابکاری نشده آبکاری شود. ثانیاً بلور یا ذره yBCo همسطح نمیباشند. برای بررسی اولیه نقطه، انحراف یا خمش پرتو x برای مورد نمونه تابکاری نشده و مشخص میشود و در شکل 2 نشان داده شده است. مشاهده میشود که تمام سطوح {o,o,n} برای yBCo و CeCo2 واضح و مشخص هستند. این موضوع نشان میدهد که ساختار و ترکیب لایههای CeCo2 و yBCo دقیق و درست است و اولین مورد ویژه و اختصاصی است. سپس سطح لایه نازک yBCo برروی لایه تابکاری نشده CeCo2 با میکروسکوپ اتمی (AFM) بررسی میشود که در شکل 3 نشان داده شده است.
Fabrication of Biepitaxial YBazCu307_,
Josephson Junctions and SQUIDS
S. Y. Yang?, H. E. Horngl, W. L. Lee2, H. W. Yu2, and H. C. Yang2
1 Department of Physics, National Taiwan Normal University, Taipei, Taiwan 117, R.O.C.
2Department of Physics, National Taiwan University, Taapei, Taiwan 106, R.O.C.
(Received December 20, 1997)
We reported the fabrication and characteristics of biepitaxial YBCO/CeOz/MgO
Josephson junctions and SQUIDS, here Ce02 was used as a seed layer to create the biepitaxial
grain boundary. The surfaces of the unannealed CeO2 layer and the annealed
one were probed by the atomic force microscope (AFM). The temperature dependent
resistance of YBCO/Ce02/MgO thin film reveals that the annealing process for CeO2
layer is crucial for the quality of the YBCO thin film. The voltage-current curves
of Josephson junctions exhibit the resistively shunted junction (RSJ) behavior. Furthermore,
both the integral and half-integral Shapiro steps were observed under zero
applied magnetic field. The magnetic modulated voltage oscillation was also found for
the SQUIDS.
PACS. 74.50.+r - Proximity effects, weak links, tunneling phenomena, and Josephson
effects.
_ PACS. 74.76.-w - Superconducting films.
I. Introduction
Owing to the development of the superconducting integrated circuits, high-T, superconducting
Josephson junctions have been examined widely. In order to obtain the
controllable and reproducible Josephson junctions, various types of junctions are used,
such as step-edge boundary [l], SNS [2] or bicrystal substrate [3]. However, these kinds
of boundaries usually involve too many processes during fabrication [4,5]. To simplify the
fabrication processes, biepitaxial grain boundary Josephson junctions were studied. In this
work, CeO2 was chosen to be a seed layer for the biepitaxial YBazCusO7_, grain boundary
and an easy chemical etching method instead of conventional ion milling was used to lift
off half of the CeO2 layer on MgO substrate. We fabricated the biepitaxial YBa2Cu307_y
Josephson junctions and SQUIDS. Some voltage-current characteristics for the Josephson
junctions and SQUIDS were investigated. And also, the magnetic field modulated voltage
oscillation for the SQUIDS was checked.
II. Experimental details
An off-axis rf magnetron sputtering system was used to deposit all films in this work.
Ce02 was sputtered at 750 ?C onto the MgO(001) substrate which was covered partly by
409 @ 1998 THE PHYSICAL SOCIETY
OF THE REPUBLIC OF CHINA
410 FABRICATION OF BIEPITAXIAL YBazCuaO-i_, VOL. 36
a 800 A-thick YBa$usOr_y (YBCO) 1 ayer. Next, the CeOz/YBCO layer was lifted off by
using hydrochloric acid. Then, this substrate was annealed at 1100 ?C for 10 hours. To
examine the changes of the CeOz surface, both the surface morphologies of the annealed
and the unannealed Ce02 layers were taken by atomic force microscope (AFM) followed by
depositing a 2000 A-thick YBCO layer onto the annealed substrate. Moreover, the YBCO
thin film with a biepitaxial grain boundary was patterned photolithographically into a 5
pm-wide Josephson junction or a SQUID with the hole area of 20 x 40 pm2 and the junction
width of 5 pm. To investigate the microwave responses of the junction, a microwave was
guided to the junction by using a diode antenna. For checking the magnetic field modulated
voltage oscillation, the SQUID was mounted in a solenoid which provided a magnetic field
perpendicular to the plane of the SQUID. The traditional four-probe method was used for
electric measurements and the criterion voltage for the critical current was 1 JLV in this
work.
III. Results and discussion
In order to confirm the good quality of the YBa2CusOr_, (YBCO) thin film, the
temperature dependent resistances of YBCO thin film on the MgO substrate and that on
the unannealed CeO2 layer were measured, as shown in Fig. 1. The YBCO film on the
MgO substrate exhibits a superconducting behavior with T,,,,, = 84.2 K. However, the
YBCO film on the unannealed CeO2 layer shows a semiconducting resistive behavior with
a little drop at temperature around 82 K. This semiconducting resistive behavior may be
due to the following causes. First, the composition of YBCO is changed as it was sputtered
on the unannealed CeOa layer. Secondly, the grain of the YBCO is not planar. To check
the first point, powder x-ray diffraction pattern was detected for the unannealed sample
and shown in Fig. 2. It was observed that all the peaks of {O,O,n} planes for YBCO and
CeOz are clear and sharp. This implies that the compositions for YBCO and CeOz layers
are correct and hence the first cause is exclusive. Next, the surface profile of the YBCO
thin film on the unannealed CeO2 layer was probed by the atomic force microscope (AFM),
as shown in Fig. 3. It was found that many spiral grains appear on the surface of the
YBCO thin film, as indicated by arrows. The spiral grains result from the dislocation of
the layered structure in YBCO. Since the transport properties of YBCO are dominated
by its layered structure and become poor as the layered structure is deformed., Hence, the
spiral grains are responsible for the semiconducting resistive behavior of the YBCO thin
film on the unannealed CeOz layer.
To improve the quality of YBCO thin film on the Ce02 layer, the MgO substrate
covered with a CeOz layer was annealed at 1100 ?C for 10 hours under one atmosphere
of oxygen before depositing the YBCO thin film. The resistance versus temperature for
the YBCO thin film on the annealed CeO;! layer was shown in the inset of Fig. l(b).
It was observed that the YBCO thin film reveals a good superconducting behavior with
Tc,zero -- 87.2 K. Hence, the annealing process for the CeO2 layer is essential for improving
the quality of YBCO/Ce02 thin films. In order to investigate the changes of the CeO2
layers before and after being annealed, the surface images of the CeO2 layers were probed
by AFM and were shown in Fig. 4. Some surface features are listed in Table I. It was found
that the grain size becomes much larger, meanwhile, the CeO2 surface turns out rougher