فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی- کاهشی (Redox) در فرآیند زوج شدن اکسایشی متان در راکتور بستر سیال

در این تحقیق فرآیند زوج شدن اکسایشی متان روی کاتالیستهای دارای خاصیت اکسایشی کاهشی در راکتور بستر سیال بررسی شد
دسته بندی شیمی
بازدید ها 35
فرمت فایل doc
حجم فایل 3633 کیلو بایت
تعداد صفحات فایل 112
بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی- کاهشی (Redox) در فرآیند زوج شدن اکسایشی متان در راکتور بستر سیال

فروشنده فایل

کد کاربری 15
کاربر

بررسی فعالیت و انتخاب‌پذیری کاتالیستهای اکسایشی- کاهشی (Redox) در فرآیند زوج شدن اکسایشی متان در راکتور بستر سیال

در این تحقیق فرآیند زوج شدن اکسایشی متان روی کاتالیستهای دارای خاصیت اکسایشی- کاهشی در راکتور بستر سیال بررسی شد. بدین منظور کاتالیست Mn-Na2WO4/SiO2 بعنوان یک کاتالیست دارای خاصیت اکسایشی- کاهشی انتخاب شد. بمنظور بررسی خاصیت فوق در این کاتالیست آزمایشهای حالت گذرا طراحی و انجام شد. سپس به بررسی شرایط مختلف واکنشی روی این کاتالیست در راکتور بستر سیال پرداختیم.

در آزمایشهای حالت گذرا خوراک متان بدون حضور اکسیژن در فاز گاز به صورت یک تغییر پله‌ای روی کاتالیست فرستاده شد و واکنش زوج شدن اکسایشی متان مورد برسی قرار گرفت. خروجی راکتور توسط دو سیستم GC و GC-MS مورد آنالیز قرار گرفت. اثر دماهای مختلف عملیاتی در میزان تولید محصولات زوج شدن نشان داد که کاتالیست مزبور دارای خاصیت اکسایشی- کاهشی است و با افزایش دمای بستر کاتالیستی میزان تحرک اکسیژن شبکه افزایش یافته و بدین ترتیب افزایش در تولید محصولات را شاهد خواهیم بود. اکسیداسیون مجدد بستر کاتالیستی با اکسیژن و تکرار آزمایشها و نتایج دلیل خوبی در تأیید خاصیت اکسایشی-کاهشی کاتالیست است.

در بخش دوم آزمایشهای حالت گذرا در دو دمای 800 و oC850 و با همان شرایط قبلی تکرار شد و درصد تبدیل متان، درصد مولی اجزاء و انتخاب‌پذیری محصولات مورد بررسی قرار گرفت. مشاهده شد که ابتدا میزان تبدیل متان بالا است و سپس با کاهش اکسیژن کاتالیست و همچنین کاهش سرعت در اختیار قرار دادن آن، میزان تبدیل متان کاهش قابل توجهی می‌یابد.

با توجه به نمودار اجزای مولی محصولات بر حسب زمان در زمانیکه میزان تبدیل بالا است عمده محصولات واکنش زوج شدن C2H6 , C2H4 است. به عبارت دیگر در دقایق اولیه انتخاب پذیری C2+ بالا است ولی با گذشت زمان انتخاب‌پذیری افت محسوس داشته و امکان تشکیل CO روی کاتالیست افزایش می‌یابد. تغییرات فوق در دمای oC850 بدلیل سهولت در اختیار قرار گیری اکسیژن کاتالیست شدیدتر است.

سپس تستهای بررسی عملکرد در راکتور بستر سیال و در شرایط مختلف عملیاتی مورد بررسی قرار گرفت. اثر دمای بستر کاتالیستی، سرعت ظاهری گاز ورودی (دبی حجمی خوراک) و میزان اکسیژن در خوراک ورودی روی بازده و انتخاب‌پذیری کاتالیست پارامترهایی عملیاتی مورد تحقیق بودند و در نهایت مقایسه بین عملکرد بستر ثابت و سیال در شرایط یکسان انجام شد. هنگام انجام فرآیند OCM در بستر سیال، دستیابی به شرایط همدما که اساساً بواسطه اختلاط معکوس فاز جامد می‌باشد، ممکن شد. بالاترین بازده C2+ بدست آمده در راکتور بستر سیال در حدود 9/21% (سرعت ورودی گاز= cm/s 3/4 (دبی حجمی خوراک= sccm478)، دمای بستر کاتالیستی= °C870، 1=Air/ CH4و وزن کاتالیست= g5/3) بود. انتخاب‌پذیری C2+ با افزایش دما هم برای بستر سیال و هم برای بستر ثابت افزایش می‌یابد ولی در گستره دمایی وسیعی از تغییرات دمایی تقریباً ثابت و همواره در بستر سیال بیشتر از بستر ثابت است.

افزایش سرعت ورودی گاز (دبی خوراک) ورودی از 1/2 تا cm/s 1/12 (240 تا sccm 1355) باعث کاهش درصدتبدیل و انتخاب‌پذیری C2+ به ترتیب از مقدار 1/27% به 1/6% و 9/67% به 5/61% می‌شود (1=Air/CH4 و دمای بستر کاتالیستی= °C850).

کاهش میزان اکسیژن موجود در خوراک باعث افزایش انتخاب‌پذیری C2+ از 3/55% به 6/71% و کاهش درصد تبدیل متان از 2/32% به 6/25% می‌شود.

کلمات کلیدی:

زوج شدن اکسایشی متان- راکتور بستر سیال - کاتالیست-اکسایشی کاهشی- حالت گذرا

فهرست مطالب

چکیده 1

پیش گفتار3

فصل اول

1-1- مقدمه 4

1-2- زوج شدن اکسایشی متان 6

1-3- مکانیزم واکنش 9

1-4- کاتالیست‌های فرآیند زوج شدن اکسایشی متان 13

1-4-1- فلزات قلیایی و قلیایی خاکی 15

1-4-2- لانتانیدها و اکتنیدها 15

1-4-3- فلزات واسطه 16

1-5- راکتورهای فرآیند OCM 16

1-5-1- راکتور بستر ثابت 17

1-5-2- راکتور غشایی 19

1-5-3- راکتور بستر سیال 20

فصل دوم: سیال سازی

2-1- مقدمه 22

2-2- پدیده سیالیت 22

2-3- نمودار افت فشار در مقابل سرعت 25

2-4- رفتار مایع مانند یک بستر سیال 28

2-5- مزایا و معایب بسترهای سیال برای عملیات صنعتی 28

2-5-1- مزایا 28

2-5-2- معایب 29

2-6- درهم آمیختن و بهم پیوستن ذرات در دمای بالا 30

2-7- انواع سیالیت گازی بدون حمل ذرات 31

2-8- طبقه بندی Geldart از ذرات 32

فصل سوم: زوج شدن اکسایشی متان در راکتور بستر سیال

3-1- مقدمه 35

3-2- تاثیر دما و ترکیب خوراک گاز 36

3-3- اثر سرعت گاز 39

3-4- اثر ارتفاع بستر 41

3-5- اثر اندازه ذرات 44

3-6- اثر حضور اتان در خوراک 45

3-7- اثر رقیق کردن بستر کاتالیستی با جامد بی‌اثر روی عملکرد راکتور 46

3-8- عوامل دیگر 47

3-8-1- اثر ماکزیمم قطر حباب 47

3-8-2- اثر دما در بخش بالایی بستر 47

3-8-3- اثر توزیع خوراک اکسیژن و طراحی توزیع کننده ثانوی 48

فصل چهارم: فعالیتهای تجربی

بررسی واکنش زوج شدن اکسایشی متان روی کاتالیست Mn/Na2WO4/SiO2 50

4-1- روش ساخت کاتالیست 50

4-2- تعیین مشخصات کاتالیست 51

4-3- بررسی خاصیت اکسایشی- کاهشی کاتالیست در حالت گذرا 51

4-4- بررسی عملکرد کاتالیست 55

4-5- بررسی کاتالیست از دید سیالیت 56

4-6- سیستم تست عملکرد کاتالیست در فرآیند زوج شدن اکسایشی متان 57

4ـ6ـ1ـ بخش خوراک دهی 57

4-6-2- نوع راکتور آزمایشگاهی 59

4-7- سیستم آنالیز 60

4-8- کالیبراسیون سیستم آزمایشگاهی 61

4-8-1- کالیبراسیون کنترل کننده‌ جریان جرمی (MFC) و روتامتر 62

4ـ8ـ2ـ کالیبراسیون دستگاه GC 63

4-8-3- ارائة نمونة محاسبات کالیبراسیون و نتایج حاصل از بررسی عملکرد 63

4-8-4- محاسبات درصد تبدیل متان، انتخاب‌پذیری محصولات و موازنه کربن 64

4-8-4-1- درصد تبدیل متان 64

4-8-4-2- انتخاب‌پذیری محصولات 65

4-8-4-3- موازنه کربن 66

فصل پنجم: نتایج و بحث

5-1- نتایج تعیین مشخصات کاتالیست 68

5-2- نتایج بررسی خاصیت اکسایشی- کاهشی کاتالیست 69

5-3- نتایج تست عملکرد کاتالیست 77

5-3-1- اثر دما 77

5-3-2- اثر دبی خوراک 80

5-3-3- اثر ترکیب خوراک 86

فصل ششم: نتیجه‌گیری و پیشنهادات 88

مراجع 91

پیوست‌ها 96

ضمیمه – الف 96

ضمیمه – ب98

فهرست شکلها

عنوان شکل صفحه

شکل 1-1- شبکه واکنش هتروژن OCM بر اساس مدل پیشنهادی Mleczko و Stansch 12

شکل2-1- انواع مختلف تماس یک پیمانه از ذرات به وسیله سیال 23

شکل 2-2- ΔP در مقابل uo برای شن تیز یک اندازه که رفتاری ایده‌آل را نشان می‌دهد 27

شکل2-3-:از سیالیت خارج شدن ذرات 20+16- مش مس 30

شکل 3-1- اثر دما روی تبدیل متان و اکسیژن در ترکیبهای مختلف خوراک 38

شکل 3-2- اثر دما روی انتخاب پذیری و بازده C2+ در ترکیبهای مختلف خوراک 39

شکل 3-3- تاثیر دما روی تبدیل متان و اکسیژن برای سرعتهای مختلف گاز 40

شکل 3-4- اثردما روی انتخاب پذیری و بازده C2+ برای سرعتهای مختلف گاز 41

شکل 3-5- اثر دما روی تبدیل متان و اکسیژن برای ارتفاع های مختلف بستر 42

شکل 3-6- اثر دما روی انتخاب پذیری و بازده C2+ برای ارتفاع های مختلف بستر 43

شکل3-7- اثر اندازه ذرات روی(a) دمای فاز متراکم (b) تبدیل متان (c) تبدیل اکسیژن

(d) انتخاب پذیری C2+ 44

شکل4-1- میکرو راکتور مورد استفاده برای انجام آزمایشات حالت ناپایا 52

شکل4-2- سیستم آزمایش حالت گذرا با تغییرات پله ای 52

شکل 4-3 :شمای ساده‌ایی از Set-up آزمایشگاهی نصب شده جهت تست عملکرد کاتالیستی

فرآیند زوج شدن اکسایشی متان (OCM) 57

شکل 4-4- شمایی از راکتوربستر سیال تست عملکرد کاتالیست 60

شکل 4-5- نمایش سیستم گازکروماتوگراف Carl 400 A مورد استفاده آزمایش 61

شکل 5-1- نتایج آنالیز XRD از نمونه کاتالیست Mn/Na2WO4/SiO2 68

شکل 5-2- تغییر پله‌ای در خوراک ورودی (شرایط عملیاتی: دبی خوراک 10% متان

و آرگون= 20 sccm، oC850=Bed Temperature، mcat=0.1 g) 69

شکل 5-3- تغییر پله‌ای در خوراک ورودی در دماهای مختلف برای شکست مولکولی 30 (اتان)

(شرایط عملیاتی: دبی خوراک 10% متان و آرگون= 20 sccm،

oC850=Bed Temperature، mcat=0.1 g) 71

شکل 5-3- تغییر پله‌ای در خوراک ورودی در دماهای مختلف برای شکست مولکولی 30 (اتان)

(شرایط عملیاتی: دبی خوراک 10% متان و آرگون= 20 sccm،

oC850=Bed Temperature، mcat=0.1 g) 71

شکل 5-5- تغییرات درصدتبدیل متان با زمان در دمای 800 و oC850 بعد از تغییر پله‌ای

در خوراک ورودی از آرگون به مخلوط 10% متان در آرگون 73

شکل 5-6- نمودار تغییرات درصد مولی محصولات در تغییر پله‌ای خوراک در دمای oC800

(شرایط عملیاتی: فشار اتمسفری، 12 L/g cat. h) 74

شکل 5-7- نمودار تغییرات درصد مولی محصولات در تغییر پله‌ای خوراک در دمای oC850

(شرایط عملیاتی: فشار اتمسفری، 12 L/g cat. h) 74

شکل 5-8- تغییرات انتخاب‌پذیری محصولات با زمان در تغییر پله‌ای خوراک ورودی

در دمای oC800 (شرایط عملیاتی: فشار اتمسفری، 12 L/m cat. h) 75

شکل 5-9- تغییرات انتخاب‌پذیری محصولات با زمان در تغییر پله‌ای خوراک ورودی در

دمای oC850 (شرایط عملیاتی: فشار اتمسفری، 12 L/m cat. h) 76

شکل 5-10- اثر دمای بستر کاتالیستی بر درصد تبدیل متان در راکتور بستر ثابت و سیال

(mcat=3.5 g, Feed Flow Rate= 478 sccm, CH4/Air=1) 78

شکل 5-11- اثر دمای بستر کاتالیستی بر گزینش‌پذیری محصولات C2+ در راکتور بستر

ثابت و سیال (mcat=3.5 g, Feed Flow Rate= 478 sccm, CH4/Air=1) 79

شکل 5-12- اثر افزایش سرعت ورودی گاز روی درصد تبدیل متان در راکتور بستر سیال

(mcat=2.0 g, Bed Temperature= 850oC, CH4/Air=1) 81

شکل 5-13- اثر افزایش سرعت ورودی گاز روی گزینش پذیری محصولات C2+ در راکتور بستر سیال

(mcat=2.0 g, Bed Temperature= 850oC, CH4/Air=1) 81

شکل 5-14- اثر افزایش دبی خوراک روی گزینش پذیری محصولات در راکتور بستر سیال

(mcat=2.0 g, Bed Temperature= 850oC, CH4/Air=1) 82

شکل 5-15- اثر افزایش سرعت ورودی گاز روی گزینش‌پذیری محصولات در راکتور بستر سیال

(mcat=3.5 g, Bed Temperature= 850oC, CH4/Air=1) 83

شکل 5-16- تغییرات درصد تبدیل متان با سرعت ورودی گاز. مقایسه بین عملکرد راکتور بستر

ثابت و سیال در شرایط عملیاتی یکسان (mcat=3.5 g, Bed Temperature= 850oC, CH4/Air=1) 84

شکل 5-17- تغییرات گزینش پذیری C2+ با سرعت ورودی گاز. مقایسه بین عملکرد راکتور بستر

ثابت و سیال در شرایط عملیاتی یکسان (mcat=3.5 g, Bed Temperature= 850oC, CH4/Air=1) 85

شکل 5- 18- اثر تغییرات نسبت متان به هوا در خوراک ورودی روی درصدتبدیل متان.مقایسه

بین عملکرد بستر سیال و بستر ثابت (mCat=3.5 g, Bed Temperature=850oC,

Feed Flow Rate=478 sccm) 86

شکل 5- 19- اثر تغییرات نسبت متان به هوا در خوراک ورودی روی گزینش پذیری C2+.مقایسه

بین عملکرد بستر سیال و بستر ثابت (mCat=3.5 g, Bed Temperature=850oC,

Feed Flow Rate=478 sccm) 87

فهرست جداول

عنوان جدولصفحه

جدول 3-1- اثر حضور اتان در خوراک ورودی به راکتور بستر سیال روی کاتالیست Li/MgO45

جدول 4-1- مشخصات گازهای مورداستفاده در سیستم‌های آزمایشگاهیOCM 58


کاتالیست Pt⁄(〖γ-Al〗_2 O_3 )

کاتالیست‏ها یک نقش کلیدی در صنایع دارند یک وظیفه اصلی کاتالیست، افزایش سرعت و درجه ، یک واکنش بدون مصرف شدن آن می‏باشد در واقع کاتالیست‏ها اثربخشی و بهره‏وری را در انجام واکنش‏های شیمیائی افزایش می‏دهند، که این موضوع در واقع سودآوری را افزایش می‏دهد
دسته بندی شیمی
بازدید ها 29
فرمت فایل doc
حجم فایل 4149 کیلو بایت
تعداد صفحات فایل 63
کاتالیست Pt⁄(〖γ-Al〗_2 O_3 )

فروشنده فایل

کد کاربری 15
کاربر

کاتالیست‏ها یک نقش کلیدی در صنایع دارند. یک وظیفه اصلی کاتالیست، افزایش سرعت و درجه ، یک واکنش بدون مصرف شدن آن می‏باشد. در واقع کاتالیست‏ها اثربخشی و بهره‏وری را در انجام واکنش‏های شیمیائی افزایش می‏دهند، که این موضوع در واقع سودآوری را افزایش می‏دهد.

کاتالیست‏های جامد ترکیبی از فلزات یا اکسیدهای فلزی هستند ، و ذرات فلز محدوده سطوح گسترده فلزی را روی سطح بستر ایجاد می‏کند. در واقع هدف تشکیل ذرات کوچک فلز در محدوده سطوح گسترده می‏باشد، چون واکنش‏ها روی سطوح اتفاق می‏افتد، و هدف اصلی از مهیا کردن ( preparation ) کاتالیست اشباع‏سازی است.

زمانی‏که فلز به اکسید متصل می‏شود ، اشباع‏سازی رخ می‏دهد. برای دستیابی به این مرحله ، یک نمک از اکسید فلز مربوطه محلول در آب با تشکیل هیدروکسید ، تهیه و در بستر کاتالیست پر می‏شود. این هیدروکسیدها قادر به پروتون‏گیری و پروتون‏دهی هستند و در میزان اتصال فلز به اکسید تعیین کننده است.

در هنگام تهیه کاتالیست در نتیجه انتقال پروتون مابین مایع و سطح کاتالیست موجود و تغییر PH ، تجربیات مهمی بدست آمده است.

بعد از رخ دادن جذب ، قدم دیگر ممکن است به ایجاد یک کاتالیست ایده‏آل هدایت شود.

فهرست مطالب

چکیده1

دیباچه2

فصل 1 4

آنالیز ساختار نفتا و ری‏فرمیت 5

ساختار نفتا 6

ترکیبات بی شکل از آب و فلزات 9

تاثیر کاتالیست روی ترکیبات نفتا و کیفیت محصول 12

عدد اکتان 14

واحد ری‏فرمینگ کاتالیست 17

اثرات ترکیب هیدروکربنی نفتا 19

تاثیرات نفتای شامل سولفور 21

روش‏های تحلیل 22

محدوده تقطیر 30

آنالیز سولفور و نیتروژن 31

تخمین عدد اکتان 34

فصل 2 37

امکان پذیری مکانیسم واکنش ها 38

فصل 3 43

آماده سازی کاتالیست‏های ری‏فرمینگ 44

پایه کاتالیست‏های ری‏فرمینگ 46

اسیدیته 49

کاتالیست‏های کلریدی 53

نتیجه گیری 57

منابع 59