دسته بندی | برق |
فرمت فایل | ppt |
حجم فایل | 355 کیلو بایت |
تعداد صفحات فایل | 64 |
مقدمه ای بر AVR
AVR هامیکرو کنترلرهای 8 بیتی هستند .
بر اساس سازماندهی RISCعمل می کنند.
عملیات را با سرعت ودر یک کلاک سیکل انجام می دهند.
استفاده از زبانهای سطح بالا برای برنامه نویسی.
مانند : c , BASIC
کاهش حجم کد تولیدی ودر نتیحجه سرعت بالاتر.
انواع میکرو کنترلرهای AVR
TINYAVR
AT90S or AVR
MEGAAVR
انواع TINYAVR
ATTINY10,ATTINY 11,ATTINY 12
ATTINY15L
ATTINY26, ATTINY26L
ATTINY28, ATTINY28L
انواعAT90S or AVR
AT90S1200
AT90S2313
AT90S2343, AT90S2323
AT90S8515
AT90S8535
MEGAAVRانواع
ATMEGA323
ATMEGA32
ATMEGA128
ATMEGA163
ATMEGA8
ATMEGA8515
ATMEGA8535
…
خصوصیات ATMEGA32
از معماری AVRRISC استفاده می کند.
کارایی بالا و توان مصرفی کم.
دارای131 دستورالعمل با کارایی بالا که اکثرا تنها در یک کلاک سیکل انجام میشود.
8*32 رجیستر کاربردی.
سرعتی تا 16MIPSAدر فرکانس 16MHZ
خصوصیات ATMEGA32
و.......
دسته بندی | برق |
فرمت فایل | doc |
حجم فایل | 37 کیلو بایت |
تعداد صفحات فایل | 54 |
عایقهای الکتریکی
اصولاً قسمتهای عایق ماشینهای الکتریکی ، ترانسفورماتور ها ،خطوط هوایی و غیره به صورتی طراحی می شود که بتوانند به طور مداوم تحت ولتاژ معینی کارکرده و ضمناً قدرت تحمل ضربه های ولتاژ را در لحظات کوتاه داشته باشند .
هر نوع تغییرات ناگهانی و شدید در شرایط کاری شبکه، موجب ظهور جهشها یا پالسهای ولتاژ می شود . برای مثالمی توان اضافه ولتاژ های ناشی از قطع و یا وصل بارهای زیاد به طور یکجا ، جریانهای اتصال کوتاه ، تغییر ناگهانی مدار و غیره رانام برد .
رعد و برق نیز هنگامی که روی خطوط شبکه تخلیه شود ، باعث ایجاد پالسهای فشار قوی با دامنه زیاد و زمان کم می شود .
لذا عایق های موجوددر ماشینهای الکتریکی و تجهیزات فشار قوی باید از نظر استقامت در مقابل این نوع پالسها نیز طبقه بندی شده و مشخص شوند . عایقهای الکتریکی با گذشت زمان نیز در اثر آلودگی و جذب رطوبت فاسد شده و خاصیت خود را از دست می دهند .
در مهندسی برق سطوح مختلفی از مقاومت عایقی تعریف شده است که هر کدام بایستی در مقابل ولتاژ معینی استقامت نمایند . (ولتاژ دائمی و ولتاژ لحظه ای هر کدام به طور جداگانه مشخص می شوند )و البته طبیعی است که ازدیاد ولتاژ بیشتر از حد مجاز روی عایق باعث شکست آن می شود . در عمل دو نوع شکست برای عایق ها می توان باز شناخت ،حرارتی و الکتریکی .
زمانی که عایق تحت ولتاژ قرار دارد ، حرارت ناشی از تلفات دی الکتریکی می توان باعث شکست حرارتی شود . باید توجه نمود که افزایش درجه حرارت باعث کاهش مقاومت اهمی عایق و نتیجتاً افزایش تصاعدی درجه حرارت آن خواهد شد .
خلاصه اینکه عدم توازن بین حرارت ایجاد شده در عایق با انچه که به محیط اطراف دفع می نماید ، موجب افزایش درجه حرارت آن شده و این پروسه تا زمانیکه عایق کاملاً شکسته شده و به یک هادی الکتریسته در آید ، ادامه می باید .
شکست الکتریکی در عایق ها به دلیل تجزیه ذرات ان در اثر اعمال میدان الکتریکی نیز صورت می گیرد .
با توجه به آنچه گذشت ، عایقهای الکتریکی عموماً در معرض عواملی قرار دارند که باعث می شود در ولتاژ نامی نیز حالت نرمال خود را از دست بدهند . لذا در انتخاب عایقها ، عایق با کلاس بالاتر انتخاب می شود . اندازه گیریهای مختلفی که جهت شناسایی نواقص موجود در عایق ها انجام می گیرند عبارتند از :
اندازه گیری مقاومت D.C عایق یا جریان نشتی ان ، تلفات دی الکتریک ، ظرفیت خازنی عایق ، توزیع ولتاژ در عایق ، دشارژهای جزئی در عایق و میزان پارازیتهای حاصل از آن و تست استقامت الکتریکی عایق .
تعیین میزان و تلفات یک عایق ومقایسه آن با مقادیر اولیه ، معیار خوبی برای ارزیابی وضعیت آن می باشد . اصولاً افزایش تلفات در عایق های جامد ناشی از جذب رطوبت و در روغن ها به دلیل افزایش در صد آب یا آلودگیهای دیگر درآن می باشد .
باید دانست که مقدار تلفاتی که در مورد یک ترانس اندازه گیری می شود ، جمع تلفات روغن و ایزولاسیونجامد سیم پیچ بوده و هرگاه تلفات عایق یک ترانس از مقدار مجاز تجاوز نماید ، ابتدا باید روغن را به طور جداگانه مورد آزمایش قرار داد تا بتوان وضعیت ایزولاسیون سیم پیچی را ارزیابی نمود .
با توجه به انکه با تعیین مقدار تلفات به طور مطلق و بدون در نظر گرفتن ابعاد فیزیکی و جنس عایق نمی توان قضاوت صحیحی در مورد ان به عمل آورد ، بهترین پارامتری که می تواند وضعیت ایزولاسیون را مشخص نماید نسبت مولفه اکتیو به راکتیو جریان نشتی عایق می باشد . با اندازه گیری ظرفیت تلفات عایق می توان وضعیت ان را از نظر استقامت حرارتی ، میزان رطوبت جذب شده و عمر عایق ارزیابی نمود .
تجربه نشان داده است که در موارد زیر خطر اتصال کوتاه در ایزولاسیون تجهیزات الکتریکی که مستقیماً به فساد عایق مربوط باشد ، وجود ندارد :
الف : وقتیکه ایزولاسیون دارای ضریب تلفات عایق ثابتی است و با مروز زمان افزایش نمی یابد .
ب: وقتیکه ضریب تلفات عایق روغن بوشینگ دژنکتورهای روغنی که مستقیماً روی کلید اندازه گیری شده است ، بدون توجه به اندازه گیری قبلی در حد استاندارد باشد .
با اندازه گیری ظرفیت خازنی ایزولاسیون تجهیزات الکتریکی در دوفرکانس و یا دو درجه حرارت مختلف می توان اطلاعاتی مشابه با نتیجه تست تلفات دی الکتریک از وضعیت عایق بدست آورد .
وجه تمایز تست ظرفیت خازنی در دو فرکانس مختلف با دستگاههایی که جهت همین کار ساخته شده اند در این است که در هر درجه حرارتی قابل انجام بوده و احتیاجی به گرم کردن ترانس و یا تجهیزات دیگر نیست و به همین جهت پرسنل را از حمل و نقل دستگاهها و ادوات نسبتاً سنگین که برای گرمایش بکار می روند بی نیاز می سازد.
در این روش اساس کار بر این اصل مبتنی است که ظرفیت خازن با تغییر فرکانس تغییر می نماید . تجربه نشان داده است که در مورد ایزولاسیون سیم پیچ هایی که آب زیادی به خود جذب نموده اند نسبت بین ظرفیت خازنی در فرکانسهای 2 و 50 هرتز حدود دو بوده و در مورد ایزولاسیون خشک این نسبت حدود یک خواهد بود .
اندازه گیری فوق معمولاً بین سیم پیچ هر یک از فازها و بدنه در حالتیکه بقیه سیم پیچ ها نیز ارت شده اند انجام می گیرد . دقیقترین روش برای بررسی نتایج بدست امده در هر آزمایش مقایسه آن با مقادیر کارخانهای و یا تستای مشابه قبلی می باشد که البته در این عمل باید ارقام بر اساس یک درجه حرارت واحد اصلاح شد باشند . چنانچه مقایسه فوق به عللی تحقیق پذیر نباشد ، می توان به بعضی از اتسانداردهایی که در این زمینه موجود است مراجعه نمود . برای مثال پس از انجام تعمیرات ، میزان مقاومت D.C عایق نباید کاهش بیش از 40 در صد (برای ترانس 110 کیلو ولت به بالا 30 در صد ) ، نسبت ظرفیت خازن در فرکانس 2 هرتز به ظرفیت خازن در فرکانس 50 هرتز افزایش بیش از ده درصد و ضریب تلفات عایق افزایش بیش از 30 در صد نسبت به نتایج قبل از تعمیرات را نشان بدهند .
دردرجه حرارتهای 10 و 20 درجه سانتیگراد نسبت ظرفیت خازن در فرکانس 2 هرتز به ظرفیت خازن در فرکانس 50 هرتز باید به ترتیب مقادیری حدود 2/1 و 3/1 را داشته باشند.
اضافه گرمایش مجاز در هادیهای تجهیزات الکتریکی
روشن است که عبور جریان نامی به طور مداوئم در هادیهای الکتریکی موجب گر شدن آنها و ایزولاسیون مجاورشان می شوند . این پدیده عاملی است که محدودیت اساسی را برای باردهی تجهیزات الکتریکی بوجود می آورد .
بر اساس استاندارد های معتبر ، حداکثر درجه حرارت مجاز در انواع مواد عایقی بین 90 تا 180 درجه سانتیگراد معین شده است .
54 صفحه فایل Word
قابل ویرایش
دسته بندی | برق |
بازدید ها | 126 |
فرمت فایل | pptx |
حجم فایل | 1382 کیلو بایت |
تعداد صفحات فایل | 99 |
پاورپوینت بررسی سیستم برق تبرید
در این سیستم کمپرسور از نوع باز بوده و بر روی آن دو شیر سرویس برای ورود و خروج گاز وجود دارد
شیــر سرویس
تنها اختلافی که بین این دو شیر سرویس وجود دارد در اندازه آن است.
شیر سرویس مکش،به علت عبور گاز با فشار کم بزرگتر می باشد زیرا می بایستی حجم بیشتری از گاز را عبور دهد در حالیکه شیر تخلیه که گاز با فشار زیاد و متراکم تری را عبور می دهد کوچکتر است.
موقعیکه ساقه شیر را در جهت عقربه ساعت بچرخانیم ساقه پیچی شیر به طرف داخل رانده شده ودر نتیجه شیر بسته می شود و رابطه بین کمپرسو و لوله مکش یا لوله دهش قطع می شود ولی اگر ساقه را در جهت عکس قبلی بچرخانیم ساقه به طرف خارج حرکت کرده و شیر باز می شود در این حالت مسیر سرویس بسته است و اگر ساقه شیر را از حالت باز بودن و بسته بودن کامل خارج کنیم و مقر شیر در وسط قرار گیرد در این حالت شیر باز بوده و شیر سرویس باز است.
از شیر سرویس برای نصب و اندازه گیری فشار مکش و شارژ کردن گاز و یا تخلیه هوای سیستم (وکیوم)استفاده می شود.
گاز خروجی بعد از عبور از شیر سرویس دهش وکویل کندانسوروارد شیر قطع کن اضطراری می شود
کندانسورتبخیری:
این کندانسور ها ترکیبی از کندانسور آبی و هوایی به شمار می رود زیرا عمل کندانسور آبی و هوایی را تواما انجام می دهد.
کندانسور تبخیری مورد استعمال زیادی در تاسیسات تبرید دارد.در واقع در جاهایی که مجبوریم قدرت تقطیر زیادی داشته باشیم این کنداسورها مشکل را حل می کند در محلهایی که آب کافی و تسهیلات تخلیه برای آب وجود ندارد و یا هزینه مصرف آب زیاد است و به کار بردن برج خنککن برای تاسیسات کوچک عملی نیست کنداسور تبخیری وظیفه کندانسور و برج خنک را به عهده می گیرد
طرز کار آن بدین ترتیب است که با دزنی که در بالای محفظه کنداسور نصب شده هوا را از زیر محفظه و از سطح کویل کندانسور به طرف بالا می کشد و هوای جریان یافته از سطح کویل که توسط لوله آب فشان مرتبا مرطوب می گردد عبور نمود و پس از گذشتن از درون قطره گیر به وسیله بادزن خارج می گردد در داخل کویل بخار مبرد بر عکس جریان هوا از بالا وارد کویل کندانسور شده و به تدریج در تماس با سطح کویل که با هوای سرد در تماس است تقطیر شده و به طرف پایین کویل جاری می شود ولوله کندانسور برای افزایش سطح تبادل حرارت از پره های
پوشیده شده و قطره گیر نیز برای جدا کردن قطرات آب از هوا در ورود به بادزن به کار برده شده است.
برای اینکه مایع مبرد تا چند درجه زیر دمای اشباع سردتر شود توسط پمپی که در این دستگاه نصب شده آب به بالای کندانسور جریان پیدا می کند و به وسیله لوله هایی وارد افشانکهایی که در سرتاسر لوله نصب شده گردیده و به صورت قطرات ریز در می آید که بر روی سطح کویل پاشیده می شود و بدین ترتیب با تبخیر آب روی سطح کویل در برابر جریان هوا اثر سرمایشی بیشتری را نسبت به کنداسور هوایی یا آبی ایجاد می کند.
در حدود 3 تا 5 درصد آب جریانی تبخیر میشود لذا کمبود اب توسط لوله ای که به شیر شناوری به تشتک تحتانی کندانسور نصب شده است تامین میکرددو میزان اب مصرفی این کندانسورها در حدود 10تا 20برابر از کندانسور ابی کمترمصرف میکند در دماهای زیر صفر درجه محیط خارج میبایستی موانع (از قبیل عایق کاری)برای جلوگیری از یخ زدن اب در تشتک و لوله ها در نظر گرفت.
در هوای سرد میتوان از جریان اب صرفنظر کرده و فقط از جریان هوا برای خنک کردن کویل و تقطیر مایع مبرد استفاده کرد.
چون کندانسورهای تبخیری دارای فضای کافی برای ذخیره مبرد نمی باشد از مایع مبرد خروج از کویل کندانسور به طرف مخزن ذحیره مایع مبرد جریان پیدامیکند.
رسیور
یک سیلندر فولادی است که پرس کاری و جوش کاری شده و به یک شیر سرویس مجهز میباشد معمولا یک شیر سرویس نیز روی کمپرسور نصب میکرددو وجود این شیر سرویسها به سرویس کار اجازه میدهد که در صورت لزوم مخزن و کندانسور را جداگانه از سیستم جدا کنند.