فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

ترکیبات و نظریه‌ های گراف

در این مقاله می خواهیم به دو مبحث بزرگ از ریاضیات گسسته با نامهای ترکیبات و نظریه‌ی گراف بپردازیم که در این دوران شاهد پیشرفت چشمگیر آنها می باشیم
دسته بندی ریاضی
بازدید ها 14
فرمت فایل doc
حجم فایل 268 کیلو بایت
تعداد صفحات فایل 18
ترکیبات و نظریه‌ های گراف

فروشنده فایل

کد کاربری 1024
کاربر

ترکیبات و نظریه‌ های گراف


در این مقاله می خواهیم به دو مبحث بزرگ از ریاضیات گسسته با نامهای ترکیبات و نظریه‌ی گراف بپردازیم که در این دوران شاهد پیشرفت چشمگیر آنها می باشیم .
این دو مبحث بدلیل آنکه دارای کاربرد وسیعی در علم کامپیوتر و برنامه سازی های کامپیوتری می‌باشند حائز اهمیت فراوان می باشند .
1-ترکیبات :
شاید در نگاه اول ترکیبات یک بخش معماگونه و سطحی از ریاضیات به نظر برسد که دارای کاربرد چندانی نبوده و فقط مفهوم های انتزاعی را معرفی می کند ولی این شاخه از ریاضیات دارای گستره‌ی وسیع بوده و دارای شاخه های زیادی نیز می باشد .
ابتدا به مسأله ای زیبا از ترکیبات برای آشنا شدن بیشتر با این مبحث ارائه می کنیم .
سوال : یک اتاقی مشبک شده به طول 8 و عرض 8 داریم که خانه‌ی بالا سمت چپ و خانه‌ی پایین سمت راست‌ آن حذف شده است (مانند شکل زیر)

حال ما دو نوع موزاییک داریم . یکی 2*1 ( ) و دیگری 1×2 ( ) سوال این است که آیا می توان این اتاق را با این دو نوع موزائیک فرش کرد .
احتمالاً اگر شخص آشنایی با ترکیبات نداشته باشد می گوید «آری» و سعی می کند با کوشش و
خطا اتاق را فرش کند ولی این کار شدنی نیست ؟! و اثبات جالبی نیز دارد .
اثبات : جدول را بصورت شطرنجی رنگ می کنیم مانند شکل زیر :
حال با کمی دقت متوجه می شویم که هر موزائیک یک خانه از خانه های سیاه و یک خانه از خانه‌های سفید را می پوشاند یعنی اگر قرار باشد که بتوان با استفاده از این موزائیک ها جدول پوشانده شود باید تعداد خانه های سیاه با تعداد خانه های سفید برابر باشد ولی این گونه نیست زیرا تعداد خانه های سفید جدول برابر 32 و تعداد خانه های سیاه برابر 30 می باشد . در نتیجه این کار امکان امکان پذیر نیست .

این مسأله مربوط به مسائل رنگ آمیزی در ترکیبات بوده که دارای دامنه‌ی وسیعی از مسائل دشوار و پیچیده می باشد در زیر چند نمونه از مسائل آسان و سخت را بیان می کنیم .
1-ثابت‌کنید هیچ جدولی را نمی توان به موزائیک هایی به شکل و پوشاند .
(راهنمایی: ثابت کنید حتی سطر اول جدول را هم نمی توان پوشاند)
2-ثابت کنید یک مهره‌ی اسب نمی تواند از یک خانه‌ی دلخواه صفحه‌ی n*4 شروع به حرکت کند و تمام خانه ها را طی کند .
3-یک شبکه‌ی n*m از نقاط داریم یک مسیر فراگیر مسیری است که از خانه‌ی بالا سمت چپ
شروع به حرکت کرده و از همه‌ی خانه هر کدام دقیقاً یک بار عبور کند و به خانه‌ی سمت راست پایین برود ثابت کنید شرط لازم و کافی برای وجود یک مسیر فراگیر در شبکه‌ی n*m آن است که لااقل یکی از m یا n فرد باشد (مرحله‌ی دوم المپیاد کامپیوتر ایران) در شکل زیر یک مسیر فراگیر را برای جدول 5*4 می بینیم .

B
4-ثابت کنید شرط لازم کافی برای پوشش جدول n*m با موزائیک های 2*1 یا 1*2 آن است که یا m یا n زوج باشند .
حال می‌خواهیم یک مبحث مهم از ترکیبات به نام استقراء را معرفی کنیم.
استقراء بعنی رسیدن ازجزء به کل و هم ارز است با اصل خوشترتیبی زیر مجموعه‌ها( اصل خوشتربینی بیان می‌کند که هر مجموعه متناهی از اعداد عضوی به نام کوچکترین عضو دارد).
برای اثبات حکمی به کمک استقراء لازم است:
1) حکم را برای یک پایة دلخواه(که معمولاً کوچک باشد) ثابت کنیم.
2) حکم را برای یک k دلخواه فرض می‌گیریم.
3) به کمک قسمت 2 حکم را برای ثابت می‌کنیم.
بسیاری از گزاره‌ها به کمک این استقراء که در ظاهر ساده است ثابت می‌شود:
یک مثال ساده:
ثابت کنید: .
برای که داریم و حکم برقرار است:
فرض کنیم برای درست باشد حکم را برای ثابت می‌کنیم داریم:

که این قسمت طبق فرض بردار می‌باشد
و برای نیز حکم مسأله برقرار است.
یک مثال سخت:
این سئوال در المپیاد کامپیوتر امسال مطرح شده و ما فقط یک قسمت آنرا بطور خلاصه بیان می‌کنیم.
سئوال: در روز A دارای تعداد مجموعه می‌باشد بطوریکه هیچ مجموعه‌‌ای زیرمجموعة دیگری نیست یعنی اکر )
حل شایان در روز B می‌آید از روی مجموعه‌های A تمام مجموعه‌هایی را نمی‌سازیم که دارای دو شرط زیر می‌باشند:
1- هر مجموعه‌ای دلخواه در روز B با تمام مجموعه‌ها در روز A اشتراک دارد.
2-اگر از یک مجموعة دلخواه در روز B یک عضو را حذف کنیم آنگاه دیگر شرط 1 برقرار نباشد( که به این شرط، شرط مینیمالی می‌گوئیم:
حال فراز در روز C از روی مجموعه‌های B تمام مجموعه‌هایی با دو شرط بالا را می‌سازد ثابت کنید ( یعنی تمام مجموعه‌های روز اول در روز سوم نیز تولید شده‌اند)
اثبات: ابتدا لم زیر را ثابت می‌کنیم:
لم: به ازای هر مجموعة دلخواه در روز A مثل در روز B n تتا مجموعه وجود دارند بطوریکه هر کدام از آنها دقیقاً یکی از اعضای را دارند( ممکن است اعضای دیگری نیز داشته باشند ولی هر کدام دقیقاً یکی از را دارند.)
اثبات لم: با استقراء روی تعداد مجموعه‌های روز اول حکم را ثابت می‌کنیم. برای یک مجموعه در روز A وضعیت مجموعه‌ها در روزهای C,B,A مشخص شده‌اند:


مقاله تحلیل داده ها

برای تعیین رقمهای با معنا ، رقمها را از سمت چپ به راست می شماریم صفرهایی ک قبل از اولین رقم سمت چپ نوشته می شوندجزء رقمهای با معنا به حساب نمی آیند
دسته بندی ریاضی
بازدید ها 23
فرمت فایل doc
حجم فایل 267 کیلو بایت
تعداد صفحات فایل 35
مقاله تحلیل داده ها

فروشنده فایل

کد کاربری 1024
کاربر

تحلیل داده ها


1- ارقام با معنی:
برای تعیین رقمهای با معنا ، رقمها را از سمت چپ به راست می شماریم. صفرهایی ک قبل از اولین رقم سمت چپ نوشته می شوندجزء رقمهای با معنا به حساب نمی آیند این صفرها به هنگام تبدیل یکاها ظاهر می شوند و تبدیل یکاها نباید تعداد رقمهای با معنا را تغییر دهد
12/6 : سه رقم بامعنی
0010306/0 :پنج رقم با معنی که اولین رقم با معنی یک است.صفرهای قبل از یک با معنی نیستند
20/1 : سه رقم با معنی در صورتیکه صفر با معنی نباشد عدد باید به صورت2/1 نوشته شود
38500 : سه رقم با معنی، چیزی برای اینکه نشان دهد صفرها با معنی هستند یا نه مشخص نیست می توان این ابهام را با نوشتن بصورتهای زیر برطرف کرد:
: هیچکدام از صفرها با معنی نیستند
: یکی از صفرها با معنی است
:هر دو صفر با معنی است
m 040/0 = Cm0 /4=mm40 که هر سه دارای سه رقم با معنی هستند.
2- گرد کردن اعداد:
اگر بخواهیم ارقام عدد 3563342/2 را به دو رقم کاهش دهیم، این عمل را گرد کردن عدد می نامند. برای این منظور باید به رقم سوم توجه کنیم بدین صورت که اگر قم سوم بزرگتر یا مساوی5 باشد رقم دوم به طرف بالا گرد می شود و اگر رقم سوم کوچکتر از 5 باشد رقم دوم به حال خود گذاشته می شود
4/1 3563342/2
62700 62654
108/0 10759/0
3- محاسبات و ارقام با معنی:
می خواهیم سطح مقطع یک استوانه به قطر6/7 را بدست آوریم:

اشکال کار: اگر دقت کنیم محاسبات تا 10 رقم با معنی است اگر از کامپیوتری تا 100 رقم استفاده می کردیم چه؟ در صورتیکه قطر کره تا دو رقم با معنی است بنابراین در اینگونه موارد به نکات زیر توجه می کنیم:
توجه: اگر مجبورید محاسبه ای را که در آن خطای مقادیر مشخص نیست انجام دهید و می بایستی فقط با ارقام با معنی کار کنید به نکات زیر توجه کنید:
الف ) زمانی که اعداد را در هم ضرب و یا بر هم تقسیم می کنید: عددی که با کمترین ارقام با معنی در محاسبه است را شناسایی کنید به حاصل محاسبه همین تعداد ارقام با معنی نسبت دهید
چون 7/3 با دو رقم با معنی است


ب ) زمانی که اعداد را با هم جمع و یا از هم کم می کنید: تعداد ارقام اعشاری عدد حاصل از محاسبه را برابر تعداد کمترین ارقام اعشاری اعداد شرکت داده شده در محاسبه گرد کنید
کمترین اعشار مربوط به1/13 است


مثال: شعاع یک کره5/13 سانتیمتر برآورد شده است. حجم ایمن کره را بدست آورید؟
جواب:
مثال: چگالی کرهای به جرم44/0 گرم و قطر76/4 میلی متر را بدست آورید؟

4- متغیرهای وابسته و مستقل:
به کمیتی که مقدار آن را می توانیم تنظیم نمائیم و یا در طول آزمایش به دلخواه تغییر داده می شود، متغیر مستقل گفته می شود و آنرا به عنوان مختصهx در نمودار می گیریم.
به کمیتی که بر اثر تغییر در متغیر مستقل پیدا می کند، متغیر وابسته گفته می شود و به عنوان مختصهy در نمودار گرفته می شود.
مثلا در آزمایش انبساط طولی میله در اثر حرارت دما متغیر مستقل و طول میله متغیر وابسته می باشد

5- خطا :
تمام اندازه گیریها متاثر از خطای آزمایش هستند.منطور این است که اگر مجبور با انجام اندازه گیریهای پیایی یک کمیت بخوصوص باشیم، به احتمال زیاد به تغییراتی در مقادیر مشاهده شده برخورد خواهیم کرد. گرچه امکان دارد بتوانیم مقدار خطا را با بهبود روش آزمایش و یا بکارگیری روشهای آماری کاهش دهیم ولی هرگز نمی توانیم آن را حذف کنیم.
1-5- خطای دقت وسایل اندازه گیری :
هیچ وسیله اندازه گیری وجود ندارد که بتواند کمیتی را با دقت بینهایت اندازه گیری نماید.بنابراین نادیده گرفتن خطای وسایل اندازه گیری در آزمایش اجتناب ناپذیر است.
اگر اندازه کمیتی که اندازه می گیریم با گذر زمان تغییر نکند، مقدار خطا را نصف کوچکترین درجه بندی آن وسیله در نظر می گیریم.
مثال:
متر کوچکترین درجه mm1 = مقدار خطا
پس اندازه گیریی mm54 را بصورت بیان می کنیم
دما سنج کوچکترین درجه ºC2 = مقدار خطا
پس اندازه گیریی ºC60 را بصورت بیان می کنیم
2-5- خطای خواندن مقدار اندازه گیری:
3-5- خطای درجه بندی وسایل اندازه گیری:
تعریف خطای مطلق: اگر خطا را با همان یکای کمیت اندازه گیری شده بیان نمائیم، به این خطا، خطای مطلق کمیت اندازه گیری گفته می شود
تعریف خطای نسبی: اگر خطا بصورت کسری باشد، به این کسر، خطای نسبی مقدار کمیت اندازه گیری شده گفته می شود
4-5- ترکیب خطاها :
ممکن است در آزمایشی نیاز به یافت چند کمیت، که باید آنها را بعداُ در معادله ای وارد کنیم، داشته باشیم برای مثال ممکن است جرم و حجم جسمی را اندازه بگیریم و سپس نیاز به محاسبه چگالی داشته باشم، که با رابطه زیر تعریف می شود: سوال اینجاست که چه ترکیبی از خطاهای مقادیر m وV ] اندازه خطای را بدست می دهد. بدین منظور سه روش زیر ارائه داده می شود:
الف) روش اول: این روش را با دومثال زیر توضیح می دهیم:
مثال1: قطر سیمی با مقطع دایره ای برابر است با: مطلوب است اندازه سطح سیم و مقدار خطای آن؟
جواب:

مثال2: در یک آزمایش الکتریکی، جریان جاری شده در یک مقاومت برابر با و ولتاژ دو سر مقاومت اندازه گیری شد.اندازه مقاومت و مقدار خطای مقاومت را بدست آورید؟


تحقیق ریاضیات گسسته

پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد
دسته بندی ریاضی
بازدید ها 27
فرمت فایل doc
حجم فایل 77 کیلو بایت
تعداد صفحات فایل 29
تحقیق ریاضیات گسسته

فروشنده فایل

کد کاربری 1024
کاربر

ریاضیات گسسته


مقدمه:
تاریخچه ریاضیات گسسته
پیشرفتهای سریع تکنولوژی در نیمه دوم قرن یبستم به ویژه پیشرفتهای شگفت آور علوم کامپیوتر، مسائل جدید را مطرح کردندکه طرح و حل آنها روشها و نظریه های تازه ای می طلبد. طبیعت متناهی و گسسته بسیاری از این مسائل موجب شده است که روشها و قواعد گوناگون شمارش از اهمیت خاصی بر خوردار شوند. توفیق مفاهیم لازم برای بررسی این مسائل به کار گیری منطق ریاضی و نظریه مجموعه ها را اجتناب ناپذیر ساخته است.
معادلات تفاضلی، روابط بازگشتی، توابع مولد، از دیگراجزایی هستند ک در حل مسائل مورد بحث نقشی اساسی دارند از طرف دیگر هنگام بررسی مسائل مربوط به مدارها، شبکه های حمل و نقل، ارتبا طات بازاریابی و غیره نقش جایگزین ناپذری گرا فها قا طعانه آشکار می شود.
ریاضیات گسسته مقدماتی متنی فشرده برابر یک دوره ریاضیات گسسته در سطحی مقدماتی برای دانشجویان کارشناسی علوم کامپیوتر و ریاضیات است. مولفه های اساسی برنامه کار ریا ضیات گسسته در سطحی مقد ماتی عبارتند از : ترکیبات نظریه گرا فها همراه با کار بردهایی در چند مسئاله استاندارد بهینه سازی شبکه ها، الگوریتمهایی برای حل این مسائل مهم اتحادیه سازندگان ماشینهای محاسبه و مهم کمیته برنامه ریزی یرای کارشناسی ریا ضی بر نقش حیاتی یک دوره درسی روشهای گسسته در سطح کارشناسی که دانشجویان را به حیطه ریاضیات ترکیباتی و ساختارهای جبری و منطقی وارد کند و روی ارتباط متقابل علوم کامپیوتر و ریاضیات تأکید داشته باشد صحه گذاشته اند.

جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستانی
در جریان تغییر نظام آموزش دوره های کارشناسی ریاضی در سالهای اخیر در دانشگاهها و موسسات آموزش عالی شاهد بودیم که درسهای جدید به تنا سب گرایشهای این رشته جایگزین درسهایی از نظام قبلی شدند. درس ریا ضیات گسسته نیز به ارزش 4 واحد درسی در این راستا بعنوان یکی از واحدهای پایه همه گرایشهای دوره کارشناسی ریاضی در نظر گرفته شده است. در کتابهای درسی ریا ضی نظام جدید دبیرستان نیز شاهد گنجاندن مفاهیم پایه ای مربوط به مباحث مقدماتی ریاضیات گسسته مانند نظریه گراف و دنباله ها و آمار و احتمال و ... می باشیم.
همچنین در دوره پیش دانشگاهی نیز درسی جداگانه تحت عنوان ریاضیات گسسته در نظر گرفته شده است. از آنجا که این شاخه از ریاضی نیاز مند بحث و تبادل نظر از لحاظ آموزشی و تعیین جایگاه و ارتباط آن با سایر شاخه ها و موضوعات ریاضی می باشد.
مطالبی که در این قسمت از بحث طرح خواهد شد بیشتر بر اساس مقاله ای است که تحت عنوان »آموزش ریاضی گسسته در دوره دبیرستان« توسط پروفسور آ.کاتلین
در مجلة بین المللی ریاضیات، علم و تکنولوژی 1990 درج شده است.
» انقلاب کامپیوتری، ریاضیات گسسته را همانند حساب دیفرانسیل و انتگرال برای علم و تکنولوژی ضروری ساخته است.«

محتوای کلی ریاضیات گسسته
محتوای دقیق یک دوره ریاضیات گسسته هنوز تا حدودی به طور مبهم باقیمانده است، زیرا هم کتابهایی که تاکنون در این زمینه به رشته تحریر در آمده و هم برنامه های درسی که در این مورد از سوی برنامه ریزان مباحث درسی ریاضی تهیه وتنظیم می شود، دقیقاَ نتوانسته اند موضوعات و قلمرو مباحث این درس را مشخص نمایند. موضوعاتی از قبیل نظریه اعداد و آمار و احتمالات و جبر خطی آنالیز عددی و مباحسات و برنامه سازیهای کامپیوتری ضمن اینکه در ریاضیات پیوسته جای پای محکمی دارند، در ریاضیات گسسته نیز خودنمایی و شکوفای روز افزون دارند. با این حال می توان گفت که ریاضیات گسسته شامل مباحثی است که مراحل مربوط به تغییرات گسسته و کمیتهای گسسته را توصیف می کند، در مقابل کالکوس که مراحل تغییرات به طور پیوسته را دنبال می کند پس به طور دقیق می توان گفت که ریاضیات گسسته کالکوس( حسابان) نیست.
به طور کلی یک دوره ریاضیات گسسته را می توان شامل عناوین زیر دانست:
منطق راضی و نظریه مجموعه ها ، ساختار های جبری از قبیل مباحث مربوط به گروهها و حلقه ها و میدانها و کواتریونها، شببکه ها جبر یون، نظریه گراف، روشهای ترکیبات و شمارش، نظریه اعداد محاسبات و الگوریتمهای عددی و تجزیه و تحلیل آنها، استقرار و روابط بازگشتی معادلات تفاضلی،آمار و احتمال با فضاهای نمونه ای گسسته.

تفاوت ریاضیات گسسته و حساب دیفرانسیل و انتگرال ( ریاضیات پیوسته)
در اساسی ترین سطح، مدلی برای بیان تفاوت بین ریاضیات گسسته و ریاضیات پیوسته ( یعنی حساب دیفرانسیل و انتگرال و شاخه هایی از آنا لیز که به حساب دیفرانسیل و انتگرال وابسته اند) تفاوت بین اعداد صحیح و اعداد حقیقی است. اعداد حقیقی، پایه همه ریا ضیاتی هستند که مانند حساب دیفرانسیل و انتگرال با خواص توابع پیوسته سر و کار دارند. در حالیکه ریاضیات گسسته بیشتر با توابعی سر و کار دارند که بر مجموعه نقاط گسسته تعریف شده اند( مثل دنباله ها) واز بسیاری جنبه ها به طور کامل با ساختمان پرشکوه آنالیز که بر پایه حساب دیفرانسیل بنا شده است و به طور عمده به توابع پیوسته می پردازد، تفاوت دارد. می دانیم که سیستم های فیزیکی از تعداد زیادی ذرات گسسته – اتمها و مولکولها – تشکیل شده است، در عمل پیوسته فرض کردن ماده فرض بسیار مناسب و دقیقی است. این سبب می شوند که اکثر پدیده ها ی طبیعی سیستمهای فیزیکی که از طریق حساب دیفرانسیل و انتگرال مدل سازی می شوند نوعاَ به صورت معادلات دیفرانسیل درآیند. این عملکرد آنچنان موفقیت شگفت انگیزی داشته است ک نتایج حاصل از آن تقریباَبرای همه مقاصد و اهداف ذاتاَ دقیق اند و موفقیت مهندسی وصنعت در قرنهای اخیر در سراسز دنیا مرهون این مدل سازی زیبا و دقیق و کار بردی ریاضی است، خصوصاَ از زمانی که پیدایش حسابگرهای رقمی و سپس کامپیوترها امکان بررسی و حل عددی معادلات دیفرانسیل و دیگر معادلات را فراهم نمودند. این آغاز شکوفایی آنالیز عددی بود نمونه متعارف از مسائلی که با استفاده از تکنیکهای آنالیز عددی حل می شوند این است که فرمول بندی یک مساله فیزیکی را با استفاده از حساب دیفرانسیل و انتگرال در نظر بگیریم و سپس آن را به شکل گسسته تبدیل کنیم تا با روشهای عددی قابل حل باشد. چنانچه در نمودار سیکلی مدل سازی ریاضی برای مسائل فیزیکی بیان گردید مرحله نهائی این پروژه زمانی قابل استفاده برای مسائل فیزیکی خواهد بود که جواب یا پیش بینی حاصلها از الگوی ریاضی ارزش عملی دانسته باشد و این امر جز به وسیله آنالیز عددی و محاسبات عددی مربوط به آن و تجزیه تحلیل خطاهای وارده و استفادهاز اصل دقت متغیر در روشهای ریاضی امکان پذری ننخواهد بود. از طزفی نیاز به ریاضیات گسسته، محدود به آنالیز عددی میشد نمی توانستیم ادعا کنیم که چنین ریاضیاتی نقش مقایسه کردنی با حساب دیفرانسیل و انتگرال دارد. آنالیز عددی با وجود کار بردهای وسیع، آن موضوعی تخصصی است نمی تواند تأثیر چشمکیری بر روند دآموزشی ریاضیات بگذارد هر چند آنالیز عددی مهمترین محل تلاقی ریاضیات پیوسته گسسته است امروزه تنها یک جزء کوچک از کار بردهای ریاضیات گسسته را در‌بر‌می‌گیرد.

فهرست مطالب
- مقدمه
- جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان 2

- محتوای کلی ریا ضیات گسسته 3

- تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال 4

- مرور تاریخی مباحث مهم ریاضیات گسسته 8

- مفهوم جاگشت 8

- اولین فن حدس زدن 8

- دیریکله 9

- تاریخچه اصل شمول و عدم شمول 9

- نظریه گراف 10

- مسئله پل کونیگسبرگ 10

- طریقه نمایش گراف 11

- گراف هامیلتونی 12

- رابطه های بازگشتی و مبادلات تفاضلی 19

- نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی 25

- منابع 28