دسته بندی | کامپیوتر و IT |
بازدید ها | 83 |
فرمت فایل | pptx |
حجم فایل | 375 کیلو بایت |
تعداد صفحات فایل | 32 |
پاورپوینت بررسی داده کاوی (Data Mining)
مقدمه
از هنگامی که رایانه در تحلیل و ذخیره سازی داده ها بکار رفت (1950) پس از حدود 20 سال، حجم داده ها در پایگاه داده ها دو برابر شد. ولی پس از گذشت دو دهه و همزمان با پیشرفت فن آوری اطلاعات(IT) هر دو سال یکبار حجم داده ها، دو برابر شد. همچنین تعداد پایگاه داده ها با سرعت بیشتری رشد نمود. این در حالی است که تعداد متخصصین تحلیل داده ها و آمارشناسان با این سرعت رشد نکرد. حتی اگر چنین امری اتفاق می افتاد، بسیاری از پایگاه داده ها چنان گسترش یافته اند که شامل چندصد میلیون یا چندصد میلیارد رکورد ثبت شده هستند و امکان تحلیل و استخراج اطلاعات با روش های معمول آماری از دل انبوه داده ها مستلزم چند روز کار با رایانه های موجود است. حال با وجود سیستم های یکپارچه اطلاعاتی، سیستم های یکپارچه بانکی و تجارت الکترونیک، لحظه به لحظه به حجم داده ها در پایگاه داده های مربوط اضافه شده و باعث به وجود آمدن انبارهای عظیمی از داده ها شده است به طوری که ضرورت کشف و استخراج سریع و دقیق دانش از این پایگاه داده ها را بیش از پیش نمایان کرده است .
چنان که در عصر حاضر گفته می شود « اطلاعات طلاست»
سابقه داده کاوی
داده کاوی و کشف دانش در پایگاه داده ها از جمله موضوع هایی هستند که همزمان با ایجاد و استفاده از پایگاه داده ها در اوایل دهه 80 برای جستجوی دانش در داده ها شکل گرفت.
شاید بتوان لوول (1983) را اولین شخصی دانست که گزارشی در مورد داده کاوی تحت عنوان « شبیه سازی فعالیت داده کاوی » ارائه نمود. همزمان با او پژوهشگران و متخصصان علوم رایانه، آمار، هوش مصنوعی، یادگیری ماشین و . . . نیز به پژوهش در این زمینه و زمینه های مرتبط با آن پرداخته اند.
فهرست مطالب
مقدمه
سابقه داده کاوی
بخش اول – مفهوم داده کاوی
1-1 – فرآیند داده کاوی
1-2 – ابزارهای داده کاوی
1-2-1 – هم پیوندی
1-2-2 – طبقه بندی
1-2-3 – الگوهای ترتیبی
1-2-4 – خوشه بندی
1-3 – کاربردهای داده کاوی
1-3-1 – کاربردهای تجاری
1-3-2 – کاربردهای علمی
1-3-3 – کاربردهای امنیتی
بخش دوم – داده کاوی توزیع شده
بخش سوم – عامل ها ، سِستمهای چند عامله و داده کاوی توزیع شده
3-1 – عامل
3-2 – سیستمهای چند عامله
بخش چهارم – پروسه ی کشف دانش از پایگاه داده
4-1 – ویژگی های KDD
4-1-1 – استخراج داده ها
4-1-2 – آماده کردن داده ها
4-1-3 – مهندسی داده ها
4-1-4 – مهندسی الگوریتم و تعیین استراتژی های کاوش
4-1-5- اجرای الگوریتم کاوش و ارزیابی نتایج