دسته بندی | برق |
بازدید ها | 39 |
فرمت فایل | doc |
حجم فایل | 4762 کیلو بایت |
تعداد صفحات فایل | 67 |
طراحی وساخت دستگاه ثبت کننده سیگنال الکترومایوگرام دو کاناله و مدلسازی فعالیت ایزومتریک ساعد
چکیده
هدف از این پروژه ساخت امپلی فایر دو کاناله EMG و مدلسازی فعالیت ایزومتریک ساعد و به دست اوردن رابطه کیفی بین نیروی وارد بر کف دست و دامنه EMG دو عضله دو سر و سه سر بازو و میزان نیروی متوسط ایجاد شده در انهاست.
سیگنال EMG دو عضله به وسیله کارت صوتی به کامپیوتر داده شده و از نرم افزار MATLAB برای نمایش و پردازش داده ها استفاده می شود.سپس اضافه کردن وزنه هادر کف دست و مطالعه EMG دو عضله و انتگرال قدر مطلق انها روابط مطرح شده در قسمت بالا را به دست می اوریم.
در بخش مدلسازی پس از ساده سازی به مدلسالزی ماهیچه دو سر بازو می رسیم که برای ثبت پاسخ ان از سنسوری که خودمان طراحی کردیم استفاده می کنیم و پاسخ این سنسور را هم با کارت صوتی به کامپیوتر می دهیم.
مقدمه
در اثر انتقال سیگنالهای عصبی به عضله , تارهای عضلانی فعال شده و ایجاد پتانسیل عمل می نماید که به آن EMG گویند که در واقع تجلی اراده انسان برای انجام حرکت است . انتشار این پتانسیل های عمل در طول عضله ادامه یافته و بر روی پوست قابل دریافت می گردند . با نصب الکترودهای پوستی می توان این سیگنالها را از سطح پوست دریافت نمود .
سیگنالهای EMG از نظر فرکانس در محدودهhz 25 تا چند کیلو هرتز تغییر می کنند و دامنه های سیگنال بسته به نوع سیگنال والکترودهای استفاده شده از 100 میکروولت تا 90 میلی ولت تغییر می کنند .
بطور کلی سیگنال EMG توسط دو نوع منبع نویز می پذیرد :
2منابع غیر بیولوژیکی
منابع بیولوژیکی شامل حرکات سایر عضلات مانند عضله قلب و حرکات ناشی از ضربان رگهای خونی است و منابع غیر بیولوژیکی شامل سیستمهای اندازه گیری و تداخلات برق شهر و محیط اطراف آن و حرکات شخص آزمایش دهنده و حرکت الکترودها می باشد .
ثبت کننده EMG شامل مدارهایی است که می تواند سیگنال بسیار ضعیف EMG را که حداکثر دامنه ای به اندازهmv 1 دارد و دارای نویز نیز می باشد , را پردازش کرده و با کمترین نویز و دامنه قابل قبول در خروجی ظاهر سازد
در طراحی مدار ثبت کننده EMG بدلیل اینکه پهنای باند فرکانسی این سیگنال عموما" بین 25 تا 1000 هرتز است , از یک فیلتر بالا گذر و یک فیلتر پایین گذر استفاده شده است .همچنین برای حذف نویز hz 50 برق شهر که به ورتداخلی وارد می شود از یک فیلتر میان ناگذر تیز استفاده می کنیم .برای رساندن سطح سیگنال به مقدار قابل نمایش
هم گین 1000 را در مدار تعبیه می کنیم.سپس سیگنال حاصله را به وسیله وسیله کارت صدا به کامپیوتر می دهیم.
بنابراین تا این مرحله اطلاعات A/D کارت صدا از طریق پورت PCI به پردازنده کامپیوتر انتقال یافته است . حال به دنبال راهی می گردیم که این اطلاعات را بتوانیم نمایش دهیم و بر روی ان پردازش انجام دهیم. نرم افزاری که ما در این پروژه از ان استفاده کردیم MATLAB می باشد.MATLAB به عنوان یک زبان برنامه نویسی و ابزار دیداری کردن داده , قابلیت های بسیاری در زمینه های مهندسی , محاسبات و ریاضیات دارا می باشد. برای دادن سیگنال EMG دو عضله به طور همزمان از مد استریوی کارت صدا استفاده می کنیم.
پس ان واردمرحله ی مدلسازی حرکت ایزومتزیک ساعد می شویم. مدل سازی یکی از جنبه های مهم اغلب مطالعات مهندسی پزشکی است . مدل عبارت است از نمایش ساده شده ی اشیا و سیستمها و به همین دلیل جزء مهمی از زندگی روزمره نیز به شمار می رود.
در بحث مدلساز ی ابتدا به ساده سازی سیستم می پرازیم . سپس با وارد کردن نیرو به کف دست و ثبت جابجایی دست در فاز دینامیک حرکت به وسیله سنسور جابجایی طراحی شده وارد مرحله بعد می شویم.
مرحله بعدی انتخاب مدل مناسب برای ماهیچه است که مامدل مکانیکی هیل را در نظر گرفتیم و با محاسبه تابع تبدیل پارامتری این مدل و به دست اوردن خروجی زمانی ان با فرض اینکه ورودی پله باشد و مقایسه ان با خروجی سنسور ، پارامترها را محاسبه کردیم.
این پایان نامه شامل شش فصل است که در فصل اول به بررسی سیگنال EMG پرداختیم .در فصل دوم مطالبی راجع به الکترودهای ثبت سیگنال اورده شده است و فصل سوم هم مفصلا به شرح سخت افزار پروزه می پردازد.
فصل چهارم هم حاوی مطالبی درباره کارت صدا می باشد.
سپس در فصل پنجم به مبحث مدلسازی حرکت ایزومتریک ساعد و به دست اوردن رابطه بین وزنه ها و دامنه EMG می پردازیم.
فصل ششم هم به بررسی نرم افزار پروژه و الگوریتم های نوشته شده می پردازد.
فصل اول
در اثر انتقال سیگنالهای عصبی به عضله , تارهای عضلانی فعال شده و ایجاد پتانسیل عمل می نماید که به آن EMG گویند که در واقع تجلی اراده انسان برای انجام حرکت است . انتشار این پتانسیل های عمل در طول عضله ادامه یافته و بر روی پوست قابل دریافت می گردند . با نصب الکترودهای پوستی می توان این سیگنالها را از سطح پوست دریافت نمود . سیگنالEMG به عنوان یک ابزار غیر تهاجمی برای کنترل دست مصنوعی به کار می رود . این سیگنال حاوی اطلاعات زیادی در حوزه زمان و فرکانس است که محققان با تبدیلات ریاضی متنوع , سعی در استخراج و تحلیل اینگونه اطلاعات داشته اند .
سیگنالهای EMG از نظر فرکانس در محدودهhz 25 تا چند کیلو هرتز تغییر می کنند و دامنه های سیگنال بسته به نوع سیگنال والکترودهای استفاده شده از 100 میکروولت تا 90 میلی ولت تغییر می کنند , بنا براین تقویت کننده های EMG نسبت به تقویت کننده های ECG پاسخ فرکانسی وسیعتری را پوشش می دهند ولی در عوض لازم نیست فرکانسهای بسیار پایین را مانندECG پوشش دهند . و این امر بدلیل وجود آرتیفکت ناشی از حرکت در فرکانسهای پایین بسیار مطلوبست چرا که میتوانند بدون تحت تأثیر قرار دادن سیگنال مؤثر , فیلتر شوند .
در نمودارشکل 1-1 مقایسه ای بین محدوده تغییرات فرکانس و ولتاژ سیگنال EMG و سیگنالهای متداول دیگر انجام شده است :
شکل 1-1-مقایسه دامنه و فرکانس EMG با سیگنالهای حیاتی دیگر
همانطور که ملاحظه می کنید سیگنال EMG نسبت به سیگنالهای ECG,EEG,EOG محدوده فرکانسی وسیعتری را شامل می شود و همینطور شامل فرکانسهای خیلی کم نمی شود و نسبت به آنها دامنه بزرگتری نیز دارد . ولی دامنه آن نسبت به پتانسیل عمل آکسون پایین تر است و فرکانسهای پایین تری را نسبت به آن پوشش می دهد .
از آنجاییکه در این پروژه از الکترودهای سطحی استفاده شده است , سطوح سیگنالها پایین و پیک دامنه های آنها از 1/0 تا 1 mv است .
اما اگر از الکترودهای سوزنی فرو رونده در ماهیچه استفاده شود , سیگنالهای EMG می توانند دارای دامنه ای در حدود دو برابر حالت قبلی شوند و در نتیجه به بهره کمتری برای تقویت نیاز دارند و همچنین از آنجاییکه سطح الکترودهای سوزنی EMG نسبت به الکترودهای سطحی به مراتب کمتر است , امپدانس منبع مولد سیگنال بالاتر بوده و لذا امپدانس ورودی بالاتر تقویت کننده لازم است .
در مراکز بهداشتی و درمانی EMG اغلب به روش سوزنی انجام می شد و روش سطحی با وجود بهداشتی بودن و عدم درد , بندرت به کار می رفت زیرا این روش دارای شکل موج کاملا" تصادفی است و استخراج پارامترهای آن بدون استفاده از روشهای پردازش کامپیوتری امکان پذیر نیست , ولی اخیرا" با پیشرفتهای انجام گرفته در روشهای پردازش کامپیوتری بتدریج استفاده از الکترودهای در ثبت EMG رو به افزایش است .
یکی از مناسبترین روشهای تحلیل EMG همراه با الکترود سطحی , بررسی محتوای فرکانسی سیگنال و استخراج ویژگیهای آن با استفاده از تابع چگالی طیف توان است .
منابع نویز :
بطور کلی سیگنال EMG توسط دو نوع منبع نویز می پذیرد :
2- منابع غیر بیولوژیکی
منابع بیولوژیکی شامل حرکات سایر عضلات مانند عضله قلب و حرکات ناشی از ضربان رگهای خونی است و منابع غیر بیولوژیکی شامل سیستمهای اندازه گیری و تداخلات برق شهر و محیط اطراف آن و حرکات شخص آزمایش دهنده و حرکت الکترودها می باشد .
ثبت کننده EMG شامل مدارهایی است که می تواند سیگنال بسیار ضعیف EMG را که حداکثر دامنه ای به اندازهmv 1 دارد و دارای نویز نیز می باشد , را پردازش کرده و با کمترین نویز و دامنه قابل قبول در خروجی ظاهر سازد
در طراحی مدار ثبت کننده EMG بدلیل اینکه پهنای باند فرکانسی این سیگنال عموما" بین 25 تا 1000 هرتز است , از یک فیلتر بالا گذر و یک فیلتر پایین گذر استفاده شده است .
ثبت کننده سیگنالهای حیاتی بطور کلی عبارت است از بکارگیری تجهیزاتی الکترونیکی که بعضی از وقایع فیزیولوژیکی نرمال و یا غیر نرمال درونی انسان را به شکل سیگنالهای سمعی و بصری نمایش می دهد و به ا و یاد می دهد که روی وقایع احساس نشده و یا غیر ارادی خود با دیدن این سیگنالهای سمعی و بصری کار کند .
در زمینه مسائل مربوط به توانبخشی مفید ترین ثبت کننده , EMG است . اما سیگنال EMG به تنهایی قابل استفاده نیست چونکه بیمار و پزشک معالج سیگنالهای EMG را نمی بینند و این سیگنالها باید به علائم صوتی و تصویری قابل درک تبدیل شوند .
تجربیات نشان می دهد که بیمار در حین آزمایش ثبت EMG به تقاضای پزشک برای تغییر اندازه فعالیت ماهیچه ای , پاسخ مثبت می دهد .
مقدار IAV ویا ا نتگرال قدر مطلق یکی از مشخصه های مهم سیگنال است که با نیروی انقباض عضلانی رابطه دارد .
یکی از ا هداف اولیه همه ثبت کننده های EMG , قادرسازی بیمار به اعمال کنترل ارادی بر عضلات مخطط (عضلات ارادی ) خود است که به منظور افزایش فعالیت ماهیچه های ضعیف و کاهش فعالیت ماهیچه های متشنج به کار می رود
در آموزش کلینیکی , بیمار از طریق سیگنالهای سمعی و بصری , از انقباضهای خیلی کوچک و خیلی بزرگ ماهیچه اش آگاه می شود
در انتخاب ابزار ثبت کننده EMG باید به دو نکته توجه داشت :
منشاْ سیگنال EMG :
سیگنال EMG از ترکیب اجزای کوچکتری به نام پتانسیل عمل واحد حرکتی (motor unit action potential ) که توسط واحد های مختلف تولید می شود تشکیل شده است .
واحد حرکتی کوچکترین واحد عملکردی یک ماهیچه است که می تواند به طور ارادی فعال شود .
پتانسیلهای الکتریکی در دو طرف غشاء , عملا" در تمام سلولهای بدن وجود دارند . سلولهای عصبی و عضلانی , سلولهای قابل تحریک هستند یعنی قادر به تولید ایمپالسهای الکتروشیمیایی در غشاء خود هستند .
هر فیبر عصبی به طور طبیعی به دفعات زیاد منشعب شده و 3 الی چند فیبر عضلانی را تحریک می کند . سیگنا لهای عصبی توسط پتا نسیل های عمل که تغییرات سریع در پتا نسیل غشاء سلولهای عصبی هستند , انتقال می یابند . پتا نسیل عمل برای هدایت سیگنال عصبی در طول فیبر عصبی به حرکت در می آید تا اینکه به ا نتهای فیبر می رسد . محل تماس رشته های عصبی با فیبر عضلانی تقریبا" در وسط آن و به نام محل تماس عصبی _ عضلانی (Neuromuscularjunction ) می باشد به طوریکه پتا نسیل عمل در هر دو جهت به سوی انتهای فیبر عضلانی سیر می کند . فیبر عصبی در انتهای خود منشعب شده و مجموعه ای از ترمینالهای منشعب شده عصبی تشکیل می دهد که در یک فرو رفتگی از سطح فیبر عضلانی قرار می گیرد , اما به طور کامل در خارج غشاء پلاسمایی فیبر عضلانی قرار دارد . فرو رفتگی غشاء فیبر عضلانی موسوم به ناودان سیناپسی و فضای بین ترمینال عصبی و غشاء فیبر عضلانی موسوم به شکاف سیناپسی است .
قطر عصب در حدود یک دهم قطر فیبر عضلانی است و ایمپالسهای عصبی به تنهایی نمی توانند جریان لازم را در فیبر عضلانی ایجاد کنند و استیل کولین مانند یک تقویت کننده عمل می کند .
پتانسیل های عمل ایجاد شده در واحد های حرکتی عضله به صورت هدایت حجمی در فضای عضله پخش شده , به سطح پوست می رسند . با قرار دادن الکترود , مجموعه ای از پتانسیلهای فوق الذکر که می توانند از نظر زمانی با هم اختلاف فاز داشته باشند , دریافت می شوند . سیگنال دریافت شده همان سیگنال EMG می باشد . هنگامی که یک ایمپالس عصبی به محل تماس عصبی_ عضلانی می رسد , عبور پتانسیل عمل از روی غشاء ترمینال عصب , باعث می شود تا حدود 125 وزیکول استیل کولین به داخل شکاف سیناپسی آزاد شود . استیل کولین نفوذ پذیری غشای عضله را نسبت به یونهای سدیم با بار مثبت زیاد می کند و این امر موجب بروز یک پتانسیل عمل در فیبر عضلانی می شود . پتانسیل عمل در طول غشاء فیبر عضلانی سیر می کند و باعث رها شدن مقادیر زیادی از یونهای کلسیم و داخل شدن آنها به سارکو پلاسم محیطی فیبرها می شود . یونهای کلسیم نیروهای جاذبه ای بین فیلمانهای اکتین و میوزین ایجاد می کنند , و موجب لغزیدن آنها بر روی یکدیگر می شوند و بنابراین فر آیند انقباض صورت می گیرد
انرژی لازم جهت ادامه این فرآیند به وسیله شکستن پیوند های پر انرژی ATP و تبدیل آن به ADP حاصل می شود . از طرف دیگر چنانچه استیل کولین ترشح شده در همان حال باقی بماند , ایجاد ایمپالسهای متوالی خواهد کرد . حدود 5/1 ثانیه استیل کولین توسط آنزیمی در سطح غشاء به شکل اسید استیک و کولین تبدیل می شود . در نتیجه تقریبا" بلا فاصله پس از تحریک فیبر عضلانی به وسیله استیل کولین , ماده محرک از بین می رود .
فعالیت الکتریکی عضلات اسکلتی برای نخستین بار توسط piper (1912) ثبت گردید و EMG
نام گرفت . امروزه از این سیگنال نه تنها به عنوان ابزار تشخیص کلینیکی عضله , بلکه به عنوان شاخصی برای ارزیابی عضلات در فعالیت های ورزشی و یا به عنوان ورودی جهت کنترل اندام مصنوعی به کار می رود .
ماهیت سیگنال EMG سطحی یک فرآیند تصادفی غیر ایستا است , دامنه و طیف فرکانسی آن حتی با ثابت نگه داشتن فعالیت ماهیچه , تغییر می کند , که با تقریب قابل قبولی در فواصل کوتاه زمانی ایستا است . سیگنال EMG بر آیند زمانی _ فضایی پتانسیل های تارهای عضلانی است که می توان توسط الکترود در سطح پوست برداشت . تغییر حالت انقباضی عضله , مشخصات زمانی و فرکانسی سیگنال EMG را تغییر می دهد , زیرا فیبرهای عضلانی متفاوتی فعال می شود و از همین خاصیت برای تشخیص نوع حرکت استفاده می شود . EMG با توجه به نوع الکترود , به دو روش سوزنی و سطحی انجام می شود که در EMG سطحی از الکترودهای دیسکی استفاده می شود و پیک سیگنالهای دریافت شده بین 0.1 تا 1 میلی ولت می باشد . امپدانس الکترودها بین 200 تا 5000 اهم متغیر است و به نوع الکترود , محل تماس الکترود و الکترولیت و فرکانسی که امپدانس را مشخص می کند بستگی دارد . نکته مهم در پهنای باند سیگنال دریافتی (25-1000hz) , عدم وجود مؤلفه DC آن می باشد که علت آن می تواند مربوط به شکل فیبر عضلانی باشد . پس از بازگشت یونهای پتاسیم به خارج غشاء مرحله دیگری بنام After potential آغاز می شود که حدود 50 تا 100 میلی ثانیه دوام دارد .
در این مرحله پمپ سدیم و پتاسیم مجدد ا" یونهای سدیم را به خارج سلول هدایت می کند تا غلظت نرمال درون و برون غشاء حفظ شود . این مرحله می تواند به گونه ای باشد که انتگرال سطح زیر منحنی صفر شود , در واقع از دید تبدیل فوریه , این سیگنال دیگر دارای مؤلفه DC نخواهد بود . (اختلاف پتانسیل 90 میلی ولتی در واقع در دو طرف غشاء قرار دارد و توسط الکترود سطحی دریافت نمی شود . )
تغییر حالت انقباضی عضله , مشخصات زمانی و فرکانسی سیگنال EMG را تغییر می دهد , زیرا فیبرهای عضلانی متفاوتی فعال می شوند و همین خاصیت است که می تواند برای تشخیص نوع حرکت از سیگنال EMG استفاده نمود .
دسته بندی | برق |
بازدید ها | 26 |
فرمت فایل | doc |
حجم فایل | 2597 کیلو بایت |
تعداد صفحات فایل | 118 |
تشخیص خطای سیم بندی استاتور با آنالیز موجک و شبکه عصبی
چکیده:
در این پایان نامه ابتدا عیوب الکتریکی و مکانیکی در ماشینهای الکتریکی بررسی گردیده و عوامل به وجود آورنده و روشهای رفع این عیوب بیان شده است . به دنبال آن ، به کمک روش تابع سیم پیچی ماشین شبیه سازی و خطای مورد نظر یعنی خطای سیم بندی استاتور به آن اعمال و نتایج مورد بررسی قرار داده شده است. پارامتر اصلی که برای تشخیص خطا در این پایان نامه استفاده کرده ایم ، جریان سه فاز استاتور در حالت سالم و خطادار ،تحت بارگذاری های مختلف خواهد بود.
در قسمت بعدی تئوری موجک و همچنین شبکه عصبی مورد بررسی قرار گرفته است . مادر اینجا از برای استخراج مشخصات سیگنال استفاده کرده ایم ، مهمترین دلیلی که برای استفاده از این موجک داریم خاصیت متعامد بودن و پشتیبانی متمرکز سیگنال در حوزه زمان می باشد. شبکه عصبی که برای تشخیص خطا استفاده کرده ایم ، شبکه سه لایه تغذیه شونده به سمت جلو با الگوریتم آموزش BP و تابع فعالیت سیگموئیدی می باشد . در فصل چهارم روش تشخیص خطای سیم بندی استاتور در ماشین القایی بیان شده است که به صورت ترکیبی از آنالیز موجک و شبکه عصبی لست. روند کلی تشخص خطا به این صورت می باشد که ابتدا از جریان استاتور ماشین در حالت سالم و همچنین تحت خطاهای مختلف که در فصل دوم بدست آورده ایم استفاده شده و تبدیل موجک بروی آن اعمال گردیده است.سپس با استفاده از ضرایب موجک مقادیر انرژی در هر مقیاس استخراج و به عنوان ورودی شبکه عصبی جهت آموزش دادن آن برای تشخیص خطای سیم بندی استاتور مورد استفاده قرار گرفته است. در نهایت به کمک داده های تست، صحت شبکه مذکور مورد بررسی قرار داده شده است. در نهایت نتیجه گیری و پیشنهادات لازم بیان گردیده است.
با توجه به مطالب اشاره شده نتیجه می شود که با تشخیص به موقع هر کدام از عیوب اوّلیه در ماشین القایی می توان از پدید آمدن حوادث ثانویّه که منجر به وارد آمدن خسارات سنگین می گردد ، جلوگیری نمود . در این راستا سعی شده است که با تحلیل ، بررسی و تشخیص یکی از این نمونه خطاها، خطای سیم بندی استاتور یک موتور القایی قفس سنجابی ، گامی موثر در پیاده سازی نظام تعمیراتی پیشگویی کننده برداشته شود و با بکارگیری سیستم های مراقبت وضعیت بروی چنین ماشینهایی از وارد آمدن خسارات سنگین بر صنایع و منابع ملی جلوگیری گردد.
مقدمه:
موتورهای الکتریکی نقش مهمی را در راه اندازی موثر ماشینها و پروسه های صنعتی ایفا می کنند. بخصوص موتورهای القایی قفس سنجابی را که بعنوان اسب کاری صنعت می شناسند. بنابراین تشخیص خطاهای این موتورها می تواند فواید اقتصادی فراوانی در پی داشته باشد. از جمله مدیریت کارخانه های صنعتی را آسان می کند، سطح اطمینان سیستم را بالا می برد، هزینه تعمیر و نگهداری پایین می آید و نسبت هزینه به سود بطور قابل توجهی کاهش می یابد.
Bonnett و Soukup برای خرابیهای استاتور موتورهای القایی سه فاز قفس سنجابی، پنج حالت خرابی مطرح کرده اند که عبارت اند از: حلقه به حلقه، کلاف به کلاف، قطع فاز، فاز به فاز و کلاف به زمین[1]. برای موتورهای قفس سنجابی، خرابیهای سیم پیچی استاتور و یاتاقانها کل خرابیها به حساب می آیند و همچنین اکثر خرابیهای سیم پیچی استاتور موتور القایی از فروپاشی عایقی حلقه به حلقه ناشی می شود]2[. برخی از محققین خرابیهای موتور را چنین تقسیم بندی کرده اند: خرابی ساچمه ها ( یاتاقانها) %40-50، خرابی عایق استاتور %30-40 و خرابی قفسه روتور %5- 10 [3] که اگر خرابی حلقه به حلقه جلوگیری نشود، منجر به خطای فاز به زمین یا فاز به فاز می گردد، که خطای فاز به زمین شدید تر است. در مقالات[4] [5] نظریه تابع سیم پیچی و کاربرد آن در آنالیز گذرای موتورهای القایی تحت خطا شرح داده شده است. از این نظریه در مدلسازی خطای حلقه به حلقه استاتور استفاده شده است. علاوه بر روشهای فوق خطای استاتور موتور القایی را می توان به کمک بردارهای فضایی مورد مطالعه قرار داد[6].
فصل اول :
بررسی انواع خطا در ماشینهای القایی و علل بروز و روشهای تشخیص آنها
1-1- مقدمه:
خرابیهای یک موتور قفس سنجابی را می توان به دو دسته الکتریکی و مکانیکی تقسیم کرد.هر کدام از این خرابیها در اثر عوامل و تنش های متعددی ایجاد می گردند . این تنشها در حالت کلی بصورت حرارتی ، مغناطیسی ، دینامیکی ، مکانیکی و یا محیطی می باشند که در قسمت های مختلف ماشین مانند محور ، بلبرینگ ، سیم پیچی استاتور ، ورقه های هسته روتور واستاتور و قفسه روتور خرابی ایجاد می کنند. اکثر این خرابیها در اثر عدم بکارگیری ماشین مناسب در شرایط کاری مورد نظر ، عدم هماهنگی بین طراح و کاربر و استفاده نامناسب از ماشین پدید می آید . در این قسمت سعی گردیده است ابتدا انواع تنشهای وارده بر ماشین ، عوامل پدید آمدن و اثرات آنها بررسی گردد .
قبل از بررسی انواع تنشهای وارده بر ماشین القایی بایستی موارد زیر در نظر گرفته شود :
1- با مشخص کردن شرایط کار ماشین می توان تنشهای حرارتی، مکانیکی ودینامیکی را پیش بینی نمود و ماشین مناسب با آن شرایط را انتخاب کرد . به عنوان مثال ، سیکل کاری ماشین و نوع بار آن ، تعداد دفعات خاموش و روشن کردن و فاصله زمانی بین آنها ، از عواملی هستند که تاثیر مستقیم در پدید آمدن تنشهای وارده بر ماشین خواهند داشت .
2- وضعیت شبکه تغذیه ماشین از لحاظ افت ولتاژ در حالت دائمی و شرایط راه اندازی و میزان هارمونیکهای شبکه هم در پدید آمدن نوع تنش و در نتیجه پدید آمدن خرابی در ماشین موثر خواهند بود .
1-2- بررسی انواع تنشهای وارد شونده بر ماشین القایی :
1-2-1- تنشهای موثر در خرابی استاتور : ]1[
الف ـ تنشهای گرمایی : این نوع از تنشها را می توان ناشی از عوامل زیر دانست:
◄ سیکل راه اندازی : افزایش حرارت در موتورهای القایی بیشتر هنگام راه اندازی و توقف ایجاد می شود . یک موتور در طول راه اندازی ، پنج تا هشت برابر جریان نامی از شبکه جریان می کشد تا تحت شرایط بار کامل راه بیفتد . بنابراین اگر تعداد راه اندازی های یک موتور در پریود کوتاهی از زمان زیاد گردد دمای سیم پیچی به سرعت افزایش می یابد در حالی که یک موتور القایی یک حد مجاز برای گرم شدن دارد و هرگاه این حد در نظر گرفته نشود آمادگی موتور برای بروز خطا افزایش می یابد . تنشهایی که بر اثر توقف ناگهانی موتور بوجود می آیند به مراتب تاثیر گذارتر از بقیه تنشها هستند .
◄ اضافه بار گرمایی : بر اثر تغییرات ولتاژ و همچنین ولتاژهای نامتعادل دمای سیم پیچی افزایش می یابد.
بنابر یک قاعده تجربی بازای هر %2/1-3 ولتاژ فاز نامتعادل دمای سیم پیچی فاز با حداکثر جریان خود، 25% افزایش پیدا می کند .
◄ فرسودگی گرمایی : طبق قانون تجربی با ºc10 افزایش دمای سیم پیچی استاتور عمر عایقی آن نصف می شود. بنابراین اثر معمولی فرسودگی گرمایی ، آسیب پذیری سیستم عایقی است .
ب ـ تنشهای ناشی از کیفیت نامناسب محیط کار : عواملی که باعث ایجاد این تنشهامی شود به صورت زیر است :
◄رطوبت
◄ شیمیایی
◄خراش ( سائیدگی)[1]
◄ ذرات کوچک خارجی
ج ـ تنشهای مکانیکی : عواملی که باعث ایجاد این تنشها می شوند به صورت زیر می باشند :
◄ ضربات روتور : برخورد روتور به استاتور باعث می شود که ورقه های استاتور عایق کلاف را از بین ببرد و اگر این تماس ادامه داشته باشد نتیجه این است که کلاف در شیار استاتور خیلی زود زمین می شود و این به دلیل گرمای بیش از حد تولید شده در نقطه تماس می باشند .
◄ جابجایی کلاف : نیرویی که بر کلافها وارد می شود ناشی از جریان سیم پیچی است که این نیرو متناسب با مجذور جریان می باشد ( F∝ ). این نیرو هنگام راه اندازی ماکزیمم مقدار خودش را دارد و باعث ارتعاش کلافها با دو برابر فرکانس شبکه و جابجایی آنها در هر دو جهت شعاعی و مماسی می گردد.
1-2-2- تنشهای موثر در خرابی روتور :
الف ـ تنشهای گرمایی : عواملی که باعث ایجاد این نوع تنشها در روتور می شود به صورت زیر است:
◄ توزیع غیر یکنواخت حرارت : این مسئله اغلب هنگام راه اندازی موتور اتفاق می افتد اما عدم یکنواختی مواد روتور ناشی از مراحل ساخت نیز ممکن است این مورد رابه وجود آورد. راه اندازی های مداوم و اثر پوستی، احتمال تنشهای حرارتی در میله های روتور را زیادتر می کنند .
◄جرقه زدن روتور : در روتورهای ساخته شده عوامل زیادی باعث ایجاد جرقه در روتور می شوند که برخی برای روتور ایجاد اشکال نمی کنند ( جرقه زدن غیر مخرب ) و برخی دیگر باعث بروز خطا می شوند ( جرقه زدن مخرب ) . جرقه زدن های غیر مخرب در طول عملکرد نرمال[2] موتور و بیشتر در هنگام راه اندازی رخ می دهد .
◄ نقاط داغ و تلفات بیش از اندازه : عوامل متعددی ممکن است باعث ایجاد تلفات زیادتر و ایجاد نقاط داغ شوند . آلودگی ورقه های سازنده روتور یا وجود لکه بر روی آنها ، اتصال غیر معمول میله های روتور به بدنه آن ، فاصله متغیر بین میله ها و ورقة روتور و غیره می تواند در مرحله ساخت موتور به وجود آید .البته سازندگان موتور ، آزمایشهای خاصی مانند اولتراسونیک را برای کاهش این اثرات بکار می برند.
ب ـ تنشهای مغناطیسی : عواملی مختلفی باعث ایجاد این تنشها بر روی روتور می شوند همانند، عدم تقارن فاصله هوایی و شارپیوندی شیارها ، که این عوامل و اثرات آنها در زیر مورد بررسی قرار داده شده است :
◄ نویزهای الکترومغناطیسی : عدم تقارن فاصله هوایی ، علاوه بر ایجاد یک حوزه مغناطیسی نامتقارن باعث ایجاد مخلوطی از هارمونیکها در جریان استاتور و به تبع آن در جریان روتور می گردد. اثرات متقابل هارمونیکهای جریان ، باعث ایجاد نویز یا ارتعاش در موتور می شوند . این نیروها اغلب از نا همگونی فاصله هوایی بوجود می آیند
◄ کشش نا متعادل مغناطیسی : کشش مغناطیسی نامتعادل باعث خمیده شدن شفت روتور و برخورد به سیم پیچی استاتور می شود. در عمل روتورها به طور کامل در مرکز فاصله هوایی قرار نمی گیرند. عواملی همانند، گریز از مرکز[3]، وزن روتور ، سائیدگی یا تاقانها و ... همگی بر قرار گیری روتور دورتر از مرکز اثر می گذارند .
◄ نیروهای الکترومغناطیسی : اثر شار پیوندی شیارها ناشی از عبور جریان از میله های روتور ، سبب ایجاد نیروهای الکترودینامیکی می شوند. این نیروها با توان دوم جریان میله ) ) متناسب و یکطرفه می باشند و جهت آنها به سمتی است که میله را به صورت شعاعی از بالا به پائین جابجا می کند . اندازه این نیروهای شعاعی به هنگام راه اندازی بیشتر بوده و ممکن است به تدریج باعث خم شدن میله ها از نقطه اتصال آنها به رینگ های انتهایی گردند.
ج ـ تنشهای دینامیکی : این تنشها ارتباطی به طراحی روتور ندارند بلکه بیشتر به روند کار موتورهای القایی بستگی دارند .
برخی از این تنشها در ذیل توضیح داده می شود :
◄ نیروهای گریز از مرکز[4] : هر گونه افزایش سرعت از حد مجاز ، باعث ایجاد این نیروها می شود و چون ژنراتورهای القایی در سرعت بالای سنکرون کار می کنند اغلب دچار تنشهایی ناشی از نیروی گریز از مرکز می گردند .
◄ گشتاورهای شفت : این گشتاورها معمولاً در خلال رخ دادن اتصال کوتاه و گشتاورهای گذرا تولید می شوند. اندازه این گشتاورها ممکن است تا 20 برابر گشتاور بار کامل باشد .
د ـ تنشهای مکانیکی : برخی از مهمترین خرابی های مکانیکی عبارتنداز :
◄ خمیدگی شفت روتور
◄ تورق نامناسب و یاشل بودن ورقه ها
◄ عیوب مربوط به یاتاقانها
◄ خسارت دیدن فاصله هوایی
هـ ـ تنشهای محیطی : همانند استاتور تنشهای محیطی مختلفی، می تواند بر روی روتور تاثیر گذار باشد همانند رطوبت ، مواد شیمیایی، مواد خارجی و غیره
Abrasion -1
[2] - عملکرد نرمال تعریف می شود به صورت هر موتوری که در معرض افت ولتاژ، تغییر بار (نوسانات بار)، اغتشاشات سوئیچینگ و غیره قرار می گیرد.
فهرست مطالب
چکیده........................................................................................................................................................1
مقدمه..........................................................................................................................................................2
فصل اول: بررسی انواع خطا در ماشینهای القایی و علل بروز و روشهای تشخیص آنها
1-1-مقدمه................................................................................................................................................3
1-2-بررسی انواع تنشهای وارد شونده بر ماشین القایی..............................................................................4
1-2-1-تنشهای موثر در خرابی استاتور.....................................................................................................4
1-2-2- تنشهای موثر در خرابی روتور.....................................................................................................5
1-3- بررسی عیوب اولیه در ماشینهای القایی.............................................................................................8
1-3-1- عیوب الکتریکی اولیه در ماشینهای القایی....................................................................................10
1-3-2- عیوب مکانیکی اولیه در ماشینهای القایی......................................................................................17
فصل دوم: مدلسازی ماشین القایی با استفاده از تئوری تابع سیم پیچ
2-1-تئوری تابع سیم پیچ..........................................................................................................................21
2-1-1-تعریف تابع سیم پیچ.....................................................................................................................21
2-1-2-محاسبه اندوکتانسهای ماشین با استفاده از توابع سیم پیچ..............................................................26
2-2-شبیه سازی ماشین القایی..................................................................................................................29
2-2-1- معادلات یک ماشین الکتریکی باm سیم پیچ استاتور و n سیم پیچ روتور...................................32
2-2-1-1-معادلات ولتاژ استاتور.............................................................................................................32
2-2-1-2- معادلات ولتاژ روتور..............................................................................................................33
2-2-1-3- محاسبه گشتاور الکترومغناطیسی.............................................................................................35
2-2-1-4- معادلات موتور القای سه فاز قفس سنجابی در فضای حالت...................................................36
2-3- مدلسازی خطای حلقه به حلقه و خطای کلاف به کلاف..................................................................44
فصل سوم: آنالیز موجک و تئوری شبکه های عصبی
3-1-تاریخچه موجک ها...........................................................................................................................54
3-2-مقدمه ای بر خانواده موجک ها.........................................................................................................54
3-2-1-موجک هار...................................................................................................................................55
3-2-2- موجک دابیشز..............................................................................................................................55
3-2-3- موجک کوایفلت..........................................................................................................................56
3-2-4- موجک سیملت............................................................................................................................56
3-2-5- موجک مورلت.............................................................................................................................56
3-2-6- موجک میر...................................................................................................................................57
3-3- کاربردهای موجک.........................................................................................................................57
3-4- آنالیز فوریه.....................................................................................................................................58
3-4-1- آنالیز فوریه زمان-کوتاه..............................................................................................................58
3-5-آنالیز موجک....................................................................................................................................59
3-6- تئوری شبکه های عصبی.................................................................................................................69
3-6-1- مقدمه..........................................................................................................................................69
3-6-2- مزایای شبکه عصبی....................................................................................................................69
3-6-3-اساس شبکه عصبی.......................................................................................................................69
3-6-4- انواع شبکه های عصبی................................................................................................................72
3-6-5-آموزش پرسپترونهای چند لایه......................................................................................................76
فصل چهارم:روش تشخیص خطای سیم بندی استاتور در ماشین القایی(خطای حلقه به حلقه)
4-1- اعمال تبدیل موجک.........................................................................................................................79
4-2- نتایج تحلیل موجک..........................................................................................................................81
4-3- ساختار شبکه عصبی.........................................................................................................................94
فصل پنجم: نتیجه گیری و پیشنهادات..
نتیجه گیری.........................................................................................................................................................97
پیشنهادات..................................................................................................................................................98
پیوست ها..................................................................................................................................................99
منابع و ماخذ
فارسی....................................................................................................................................................100
منابع لاتین...............................................................................................................................................101
چکیده لاتین............................................................................................................................................105
شکل1-1 : موتور القایی با ساختار مجزا شده از هم........................................................
شکل1-2: شمای قسمتی از موتور و فرکانس عبور قطب........................................................................10
شکل1-3: (الف) اتصال کوتاه کلاف به کلاف بین نقاط b وa (ب) خطای فاز به فاز..........................15
شکل2-1: برش از وسیله دو استوانه ای با قرارگیری دلخواه سیم پیچ در فاصله هوایی.............................22
شکل2-2: تابع دور کلاف متمرکز باN دور هادی مربوط به شکل2-1......................................................23
شکل2-3: تابع سیم پیچی کلاف متمرکز N دوری مربوط به شکل2-1.....................................................25
شکل 2-4: ساختار دو سیلندری با دور سیم پیچA وB.............................................................................26
شکل2-5: تابع دور کلاف 'BB شکل2-................................................................. ...............................27
شکل2-6:(الف) تابع دور فازa استاتور (ب) تابع سیم پیچی فازa استاتور............................................30
شکل2-7: تابع سیم پیچی حلقه اول روتور.............................................................................................30
شکل2-8(الف) اندوکتانس متقابل بین فازA استاتور و حلقه اول روتور (ب) مشتق اندوکتانس متقابل بین فازa استاتور و حلقه اول روتور نسبت به زاویه ....................................................................................31
شکل2-9: شکل مداری در نظر گرفته شده برای روتور قفس سنجابی ...................................................34
شکل 2-10: نمودار جریان (الف) فازa (ب)فازb (ج) فازc استاتور در حالت راه اندازی بدون بار.....41
شکل2-11: (الف) نمودار سرعت موتور در حالت راه اندازی بدون بار(ب) نمودار گشتاور الکترومغناطیسی موتور در حالت راه اندازی بدون بار........................................................................................................42
شکل2-12: نمودار جریان (الف) فازa (ب) فازb (ج) فازC استاتور در حالت دائمی بدون بار.......43
شکل2-13: فرم سیم بندی استاتور وقتی که اتصال کوتاه داخلی اتفاق افتاده است (الف) اتصال ستاره (ب) اتصال مثلث ............................................................................................................................... 45
شکل2-14: تابع دور، فازD در حالت خطای حلقه به حلقه (الف) 35دور (ب) 20دور ج) 10دور..................................................................................................................................................48
شکل2-15: تابع سیم پیچی فازD در خطای حلقه به حلقه (الف)35دور (ب)20دور (ج) 10دور..................................................................................................................................................48
شکل2-16: (الف)تابع اندوکتانس متقابل بین فازC و حلقه اول روتور (ب) تابع مشتق اندوکتانس متقابل بین فاز C و حلقه اول روتور نسبت به زاویه ........................................................................................48
شکل2-17: (الف)تابع اندوکتانس متقابل بین فازD و حلقه اول روتور (ب) تابع مشتق اندوکتانس متقابل بین فاز D و حلقه اول روتور نسبت به زاویه..........................................................................................49
شکل2-18: نمودار جریان استاتور (الف) فازa (ب)فازb (ج) فازC در خطای 10 دور در حالت راه اندازی بدون بار ...............................................................................................................................50
شکل2-19: نمودار جریان استاتور (الف) فازa (ب) فازb (ج) فازC در خطای 35 دور در حالت راه اندازی بدون بار ...............................................................................................................................51
شکل2-20: (الف) گشتاور الکترو مغناطیسی در خطای 10دور (ب) خطای 35 دور .............................52
شکل2-21: نمودار سرعت موتور در خطای حلقه به حلقه (35دور) .......................................................52
شکل2-22:نمودار جریان استاتور (الف) فازa (ب) فازb ( ج) فازC درخطای (35دور) در حالت دائمی بدون بار ............................................................................................................................53
شکل3-1:(الف) تابع موجک هار Ψ (ب) تابع مقیاس هار ...............................................................55
شکل3-2: خانواده تابع موجک دابیشزΨ ................................................................................................55
شکل3-3: (الف) تابع موجک کوایفلت Ψ (ب) تابع مقیاس کوایفلت ............................................ 56
شکل3-4: (الف) تابع موجک سیملت Ψ (ب) تابع مقیاس سیملت ..............................................56
شکل3-5: تابع موجک مورلت Ψ ..........................................................................................................57
شکل3-6: (الف) تابع موجک میر Ψ (ب) تابع مقیاس میر ............................................................57
شکل3-7: تبدیل سیگنال از حوزه زمان-دامنه به حوزه فرکانس-دامنه با آنالیز فوریه ..............................58
شکل3-8: تبدیل سیگنال از حوزه زمان- دامنه به حوزه زمان –مقیاس با آنالیز موجک ...........................59
شکل3-9: (الف) ضرایب موجک (ب) ضرایب فوریه ....................................................................60
شکل3-10: اعمال تبدیل فوریه بروی سیگنال و ایجاد سیگنالهای سینوسی در فرکانسهای مختلف............61
شکل3-11: اعمال تبدیل موجک بروی سیگنال .....................................................................................61
شکل3-12: (الف) تابع موجک Ψ ب) تابع شیفت یافته موجک ................................................62
شکل3-13: نمودار ضرایب موجک.........................................................................................................63
شکل3-14: ضرایب موجک هنگامی که از بالا به آن نگاه شود ...............................................................63
شکل3-15: مراحل فیلتر کردن سیگنال S .............................................................................................65
شکل3-16: درخت آنالیز موجک ...........................................................................................................66
شکل 3-17:درخت تجزیه موجک ..........................................................................................................66
شکل3-18: باز یابی مجدد سیگنال بوسیله موجک ...................................................................................67
شکل3-19: فرایند upsampling کردن سیگنال ....................................................................................67
شکل 3-20: سیستم filters quadrature mirror .........................................................................67
شکل 3-21: تصویر جامعی از مرفولوژی نرون منفرد .............................................................................70
شکل3-22: مدل سلول عصبی منفرد ......................................................................................................71
شکل3-23: ANN سه لایه ....................................................................................................................71
شکل3-24: منحنی تابع خطی .................................................................................................................73
شکل3-25: منحنی تابع آستانه ای ........................................................................................................73
شکل3-26: منحنی تابع سیگموئیدی ......................................................................................................74
شکل3-27: پرسپترون چند لایه ..............................................................................................................75
شکل3-28: شبکه عصبی هاپفیلد گسسته(ونگ و مندل،1991) ................................................................75
شکل 4-1: ساختار کلی تشخیص خطا ...................................................................................................79
شکل4-2: ساختار کلی پردازش سیگنال در موجک .................................................................................81
شکل4-3: تحلیل جریان استاتور درحالت خطادار (35دور) با در بی باری .....................................82
شکل4-4: : تحلیل جریان استاتور درحالت خطادار (20دور) با در بی باری ..................................82
شکل4-5: : تحلیل جریان استاتور درحالت خطادار (10دور) با در بی باری ..................................83
شکل4-6: : تحلیل جریان استاتور درحالت سالم با در بی باری .....................................................83
شکل4-7: : تحلیل جریان استاتور درحالت خطادار(35دور)با در بارداری ......................................84
شکل4-8: : تحلیل جریان استاتور درحالت خطادار(20دور)با در بارداری .......................................84
شکل4-9: : تحلیل جریان استاتور درحالت خطادار(10دور)با در بارداری .......................................85
شکل4-10:تحلیل جریان استاتور در حالت سالم با در بارداری .........................................................85
شکل4-11: ضرایب موجک برای جریان استاتور ماشین خطادار(با خطای 35دور)در بی باری با …...86
شکل4-12: ضرایب موجک برای جریان استاتور ماشین خطادار(با خطای 20 دور)در بی باری با…...….87.
شکل4-13: ضرایب موجک برای جریان استاتور ماشین خطادار(با خطای 10دور)در بی باری با …...88
شکل4-14: ضرایب موجک برای جریان استاتور ماشین سالم در بی باری با ...................................89
شکل4-15: نمای شبکه عصبی ..............................................................................................................94
شکل4-16: خطای train کردن شبکه عصبی ........................................................................................95
جدول4-1 : انرژی ذخیره شده در ماشین سالم .......................................................................................90
جدول 4-2: انرژی ذخیره شده در ماشین خطا دار (10 دور) ................................................................91
جدول 4-3: انرژی ذخیره شده در ماشین خطا دار (20 دور) .............................................................. .92
جدول 4-4: انرژی ذخیره شده در ماشین خطا دار (35 دور) ............................................................... 93
جدول4-5: نمونه های تست شبکه عصبی ........................................................................................... 96
- Eccentricity2
- 1Centrifugal Force
دسته بندی | زبان های خارجی |
بازدید ها | 28 |
فرمت فایل | doc |
حجم فایل | 29 کیلو بایت |
تعداد صفحات فایل | 25 |
تحقیق عربی در مورد طلاق
فصل اول: طلاق
طلاق از نظر لغوی
طلاق از نظر اصطلاحی و شرعی
طلاق از نظر حقوقی
فصل دوم: ارکان و شرایط طلاق
شرایط طلاق (مطلق)
بلوغ
عقل
اختیار
قصد
اقسام طلاق
طلاق بدعی
طلاق غیر امامی
اقسام طلاق سنی
طلاق بائن
طلاق رجعی
طلاق عدی
فصل اول- معانی طلاق
طلاق از نظر لغت
منجد الطلاب کلمه طلاق را این گونه معنا می کند
الطلق- الطلق- الطلق- الطلق- الطلق- الطلق[1] آزاد، یله، رها
طلق الشی فلاناً آن چیز را مفلانی داد
طلق املرئه زوجها شوهر زن خود را طلاق داد
طلقت المرئه من زوجها از شوهر خود طلاق گرفت
اطلق المرئه زن را طلاق داد
طلق قومه از قبیله خود جداشد، با آنها متارکه کرد
طالق جمع طلق- طالفع جع طوالق زن یا دختر طلاق گرفته
به نقل از کتاب معجم مفردات الفاظ القرآن
اصل الطلاق التخلیه من الوثاق یقال اطلقت البعیر من عقاله و طلقته و هو طالق او اطلقت اناقه هی ای حللت عقالها فارسلتها[2]
ریشه طلاق رهایی از بند را گویند همانطور که گفته شد شتر را از بند رها کردم و او رفت یعنی بند او را باز کردم و او را فرستادم.
طلق بلاقید و منه استعیر طلقت المراه نحو خلیتها فهی طالق مخلاه عن حباله النکاح.
طلق، هرچیز بدون قید را گویند و از این استعاره استفاده شده و گفته شده زن را رها کرد، پس او رهاست، یعنی از قید و بند نکاح رهاست.
قیل للحلال ای مطلق لاخطر علیه. یعنی برای کلمه حلال آنرا بکار برده اند یعنی مطلقی که بدون هیچ قید و مانعی است.
المطلق فی الاحکام ما لا یقع منه استثناه. مطلق در احکام آن چیزی را گویند که در آن استناد نباشد یعنی بدون هیچ قید و مانعی است.[3]
طلق یده و اطلقها عباده عن الجود دستش باز است یعنی او شخص باسخاوتی است.[4]
قاموس قرآن طلاق را بدیگونه معنا می کند.[5]
طلاق جدائی
طلاق به معنی تطلیق مثل کلام و سلام بمعنی تکلیم تسلیم.[6]
انطلاق رفتن
فانطلقا حتی اذا رکبا فی السفینه حزقها. (کهف- 71)
رفتند تا چون به کشتی سوار شدند آنرا سوراخ کردند.
انطلاق گشاده روئی- روانی زبان
و یضیق صدری و لا ینطلق لسانی. (شعراء 13)
سینه ام تنگی می کند و زبانم روان نیست.
در مجمع فرموده: طلاق باز کردن عقد نکاح است از جانب زوج بعلتی و اصل آن از انطلاق (رفتن و کنار شدن) می باشد.[7]
بعضی آنرا اسمی برای اطلاق ازاله قید دانسته اند،[8] مانند اطلقت الاسیر، یعنی اسیر از بند آزاد شد.[9]
بعضی طلاق را اسم مصدر از طلق- یطلق- تطلیقا و تطلیقه از باب تفعیل دانستند.[10]
طلق الوجه و طلیق الوجه اذا لم یکن کالحا گشاده روست.
طلق السلیم خلاه الوجع از درد آزاد است.[11]
در مجمع البحرین چنین می گوید: در حدیث آمده است.
خیر الخیل الاقرح طلق الید الیمنی الطلق بضم الطاء واللام، ذا لم یکن فی احد قوائمه تحجیل.[12]
[1] - الطلیف= الاسیر= یطلق عنه اساره، عتاب العین، ج 5 ص 102.
[2] - کتاب العین، ج 5 ص 101.
[3] - مطلق چیزی است که صاحبش در جمیع تصرفاتش متمکن است در حدیث آمده کل شیء لک مطلق حتی یرد فیه نهی، هر چیزی برای تو حلال است تا آنکه تو از آن نهی شوی (مجمع البحرین ج الربع الثالث ص 5).
[4] - معجم مفردات الفاظ قرآن در اغب اصفهانی، ص 316.
[5] - زبده البیان فی احکام القرآن ص 600
کنزالعرفان فی فقه القرآن ص 249
مجمع البحرین ج الربع الثالث ص 56.
[6] - قاموس قرآن، ج 4، ص 232.
[7] - قاموس قرآن، ج 4، ص 231.
[8] - کنز العرفان فی فقه القرآن، 249.
[9] - مجمع البحرین ج الربع الثالث ص 58.
[10] - پاورقی شرح لمعه، ج 6 ص 11 پاورقی سید محمد کلانتر.
[11] - معجم مفردات الفاظ قرآن ص 316.
[12] - معجم البحرین ج الربع الثالث ص 58 اقرب الموارد ج 1 ص 713.