فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

گزارش کارآموزی در نیروگاه برق شازند

گزارش کارآموزی در نیروگاه برق شازند در 39 صفحه ورد قابل ویرایش
دسته بندی برق
بازدید ها 6
فرمت فایل doc
حجم فایل 56 کیلو بایت
تعداد صفحات فایل 39
گزارش کارآموزی در نیروگاه برق شازند

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کارآموزی در نیروگاه برق شازند در 39 صفحه ورد قابل ویرایش



فهرست مطالب

عنوان صفحه

مشخصات فنی نیروگاه 1

واحد سوخت رسانی 3

سیکل تولید برق 5

شعله بین مازوت 7

دستگاه GAH وخنک کننده روغن آن 19

سیستم کنترل توربین DEH 20

برجهای خنک کننده 36

دستگاه نشیاب هییدروژن JQG-3 37

دستگاه PLC LOGO 43

FLAME DECTECTOR وکاربردآنها 60




نیروگاه برق شازند در زمینی به مساحت 240 هکتار در کیلومتر 25 جاده اراک – شازند و در شرق پالایشگاه شازند در مجاورت راه آهن سراسری تهران – جنوب واقع گردیده است برق تولیدی از طریق پست 230 کیلو ولت نیروگاه به شبکه سراسری انتقال داده می شود آب مورد نیاز نیروگاه توسط 3 حلقه چاه از فاصله 7 کیلومتری به نیروگاه هدایت می شود سوخت اصلی نیروگاه گاز طبیعی و مازوت است . گاز مورد نیاز از طریق خط لوله سراسری گاز و مازوت به وسیله خط لوله از پالایشگاه شازند تامین می گردد از گازوئیل هم به عنوان سوخت راه اندازی استفاده می گردد که به وسیله تانکر از پالایشگاه به نیروگاه حمل می شود.

مشخصات فنی نیروگاه :

تعداد واحد ها : 4 واحد بخار

ظرفیت تولید بخار هر بویلر : 1045 تن در ساعت

قدرت نامی هر واحد : 325 مگاوات

توربین : سه سیلندر ( فشار قوی – فشار متوسط – فشار ضعیف )

بویلر : از نوع درام دار و با گردش طبیعی

کندانسور : نوع پاششی

درجه حرارت بخار اصلی : 540 درجه سانتی گراد

فشار بخار اصلی : 167 بار

برج خنک کن : خشک از نوع هلر

سیستم های اصلی نیروگاه :

پست 230 کیلو ولت .

بویلر

توربوژنراتور

سیسستم خنک کنندة اصلی

ترانسفورماتورهای اصلی و کمکی

سیستم های جانبی عبارتند از :

- تصفیه خانه تولید آب مقطر

- تصفیه خانه بین راهی c.p.p

- پمپ خانه چاههای آب خام

- هیدروژن سازی

سیستم های تصفیه پساب صنعتی و غیرصنعتی :

- سیستم های خنک کنندة کمکی A.C.T

- بویلر کمکی 50 تنی

- بویلر کمکی 35 تنی

- واحد سوخت رسانی

- دیزل ژنراتور اضطراری

- سیستم های اعلام و اطفاء حریق

- کمپرسورهای هوای فشرده

واحد سوخت رسانی : این واحد تشکیل شده است از تعداد 6 مخزن که ظرفیت هر کدام 20 میلیون لیتر است و همچنین اتاق کنترل و سایت تولید بخار . سوخت نیروگاه در زمستان مازوت است و در تابستان گاز شهری که توسط یک خط لوله به لوله اصلی گاز وصل می باشد مازوت ( سوخت در زمستان ) مورد نیاز توسط یک خط لوله از پالایشگاه که تقریباٌ در فاصله 2 کیلومتری از نیروگاه قرار دارد تامین می شود. مازوت پس ماندة تقطیر نفت خام در برج تقطیر می باشد مایعی سیاه رنگ و لزج می باشد که تقریباٌ شبیه قیر است این واحد هم دارای دو بویلر 35 تن است یعنی در هر ساعت 35 تن بخار تولید می کند ، بخار تولیدی در این واحد برای گرم کردن مازوت به کار می رود، در زمستان مازوت سرد می شود و حرکت آن بسیار کند می شود در درون هر کدام از مخازن بزرگ هیترهایی قرار دارد که این هیترها موجب می شوند که مازون سفت نشود. در تمام واحدهای نیروگاه سعی شده است که از بخار حداکثر استفاده شود. در تمام طول خطوط انتقال مازوت به بویلرهای اصلی و سوزاندن مازوت ، لوله های بخار هم به طور موازی به لوله های مازوت چسبیده شده و هر دو با هم عایقبندی شده ا ند بر سر راه مازوت زمانی که از مخازن اصلی به سمت بویلرهای اصلی حرکت می کنند چند مرحله وجود دارد.

مرحله اول : زمانی که مازوت ها از مخازن اصلی بیرون می آیند چند عدد هیتر بخاری است که موجب گرم شدن مازوت می شوند مقداری از مازوت گرم شده به مخازن باز می گردد .

و مقداری از آن هم به مرحله دوم می رود.









مرحله دوم : در این مرحله 8 عدد فیلتر برای تمیز کردن مازوت وجود دارد این فیلترها که به صورت استوانه ای شکل هستند در درون خود صافی هایی دارند که ذرات آلوده کنندة مازوت پشت صافی ها باقی می مانند و در ته استوانه ته نشین می شوند که بعداٌ آن را بیرون می آورند در بیرون از این صافی ها پمپی وجود دارد که این پمپ مازوت خروجی از فیلتر را به سمت بویلرهای اصلی می فرستد.







واحد کنترل قسمت سوخت رسانی یک واحد کاملاٌ مجزاست که آلارم ها ، وضعیت ولوها ، ذخیرة مخازن و ... را به صورت Online به اتاق کنترل این واحد منتقل می شود و کاربر می تواند این مقادیر را با توجه به نیاز نیروگاه کم یا زیاد کند.

در قسمت سوخت رسانی دو عدد مخزن هم برای گازوئیل درنظر گرفته شده است . علت استفاده از گازوئیل این است که از گازوئیل به عنوان پیلوت استفاده می شود ( جرقه زن ) یعنی در ابتدا برای روشن کردن مشعل های بویلر از گازوئیل استفاده می شود چون مازوت در ابتدا نمی سوزد و بعد از داغ شدن مشعل ها تزریق مازوت شروع می شود.

سیکل تولید برق :

بخار تولیدی در بویلر با دمای 540 درجه سانتیگراد و 160 بار به درون توربین HP می رود و پس از چرخاندن توربین HP فشار و دمای آن افت می کند پس دوباره به بویلر رفته و فشار و دمای آن تا حدودی 40 بار زیاد می شود و پس از آن به توربین JP رفته ( فشار متوسط ) و پس از چرخاندن آن مستقیماٌ به توربین LP می رود و آن را می چرخاند بخار خروجی از توربین (Low Pressure) LP به درون Condenser می رود. بخار بسیار داغ در Condenser به آب خیلی داغ تبدیل می شود. در Condenser همزمان مقداری از آب به برج های خنک کننده رفته و خنک می شود و مقداری از آب توسط دو عدد پمپ که به صورت Standby کار می کنند به هیترهای ( Lp:Low Pressure) می رود . در ضمن آبی که به برج های خنک کننده رفته پس از بازگشت به خود Condenser می رود و این یک سیکل بسته است . تعداد هیترهای LP 4 عدد است و پس از خروج آب داغ از هیترهای LP آب به Feed Water tank (F.W.Tank) می رود و سپس توسط 3 عدد پمپ که دو عدد در مدار و یک عدد Standby کار می کند به درون 3 عدد هیتر (HP:High Pressure) رفته و سپس دوباره به بویلر می رود این سیکل بسته است و همواره ادامه دارد.

در سر راه بخار به درون توربین ها ولو.های اضطراری قرار دارد کار این ولوها این است که اگر واحد تریپ خورد بخار را مستقیما به درون Condenser هدایت می کند.

تعداد مشعل هایی که برای بویلر در نظر گرفته شده است 34 عدد می باشد که در هر طبقه 8 عدد که در هر دو طف بویلر 4 عدد مشعل به کار رفته است این مشعل ها از دو قسمت مجزاغ از همدیگر تشکیل شده است که یکی از قسمت ها برای سوخت گاز و دیگری برای سوخت مازوت است . Gun مازوت دارای دو ورودی می باشد یکی ورودی بخار داغ و دیگری ورودی مازوت ، ابتدا ولو بخار داغ باز شده و سپس مازوت به همراه بخار داغغ به درون کوره پاشیده می شود قبل از اینکه ما از مازوت استفاده کنیم باید برای روشن کردن مشعل از اگنالیتور ( جرقه زن ) استفاده کنیم برای سوخت مازوت و گاز از دو اگناتیور جدا استفاده شده است . اگناتیور مازوت با گازوئیل کار می کند و اگناتیور گاز هم با گاز طبیعی ، برای شروع به کار گازوئیل به داخل پاشیده می شود بعد از این قسمت جرقه زن که دارای ولتاژ 2500 است شروع به جرقه زدن می کند تا Gun روشن شود بعد از روشن شدن Gun و دیدن شعله توسط سنسورهای موجود به سیستم مشعل دستور ورود سوخت می دهد تا مشعل روشن شود بع از روشن شدن مشعل Gun اگناتیور خاموش شده و بیرون می آید .

در مسیر عبور سوخت ها به درون بویلر یک ولو Shut Off قرار گرفته است ولو Shut off هنگامیکه وناحد تریپ می خورد به صورت اتوماتیک جلوی ورود گاز یا مازوت را به درون بویلر می گیرد. همچنین در کنار هر یک از مشعل هاهی یاد شده دو عدد شعله بین قرار گرفته است که یکی شعله بین گاز و داتیگری شعله بین مازوت . در ادامه به بررسی شعله بین مازوت می پردازیم .

شعله بین مازوت :

شعله بینی که در این نیروگاه به کار رفته است ZHJI نام دارد و تشکیل شده است از یک پانل تشخیص شعله و ردیف آنالایزرها . این شعله بین ها می توانند نور قابل رؤیت را تشخیص دهند.

ساختمان شعله بین :

این شعله بین از دو قسمت تشکیل شده است : اسکنر که در بویلر قرار دارد و یک ردیف آنالایزر سیگنال ، هر ردیف آنالایزر 8 عدد اسکنر دارد و اسکنرها توسط یک کابل 4 وایره ( Wire ) به کانال های مربوط متصل می گردند.

اسکنر شامل موارد زیر است :

هر اسکنر (Scanner Head) ، فیبر نوری ، کاندوئیت داخلی ، کاندوئیت خارجی یک پوسته تشخیص دهنده و بر مدار چاپی اسکنر ، این برد داخل حفاظ اسکنر قرار دارد و فیبر نوری داخل کاندوئیت است . یک طرف کاندوئیت به هد اسکنر وصل می شود و طرف دیگر آن به بدنه اسکنر که اسکنر را می سازد ، 2 نوع اسکنر وجود دارد یکی اسکنر با کاندوئیت سخت که جهت مشعل ثابت به کار می رود که در نیروگاه از این نوع اسکنر استفاده می شود و دیگری اسکنری که برای شعله های گردان به کار می رود.

از طریق اسکنری که در بویلر نصب شده است آنالایزر می تواند شدت و فرکانس شعله داخل کوره را نشان دهد. سیگنال شعله که توسط اسکنر ، Sens می شود شعله می رسد در آنجا سیگنال هایی که از 8 اسکنر می آیند به صورت جداگانه و همزمان آنالیز می شوند.

کاندوئیت خارجی اسکنر ممکن است به بدنة کوره جوش شود. هوای خنک کاری اسکنر از داخل هستة اسکنر و کاندوئیت خارجی وارد کوره می شود. هوای خنک کاری دو کار انجام می دهد. خنک کاری و تمیز کاری هر اسکنر ( جهت جلوگیری از نشستن دوده روی لنز )

اصول کارکرد اسکنرها :

هنگامی که سوخت می سوزد از خود نور قابل رؤیتی ساطع می کند که خواص موج را دارد. فرکانس موج بسته به نوع سوخت متغیر است . در عین حال فرکانس و شدت نور به نسبت سوخت به هوا ، سرعت پاشش سوخت ، شکل هندسی مشعل و ... بستگی دارد. این شعله بین همچنین شدت و فرکانس موج شعله را نیز اندازه گیری می کند.

از 8 اسکنر (ZHJ-1) 4 عدد مربوط به مشعل جلو (front) و 4 عدد مربوط به عقب (Rear) کوره در یک طبقه خاص است . به عبارت دیگر هر ردیف اسکنر در پانل کنترل به یک طبقه مشعل های بویلر تعلق دارد.

سیگنال شعله ارسالی پس از عبور از یک تقویت کنندة AC و یک محدود کننده (Limiter) به یک سری پالس مربعی شکل تبدیل می شود. فرکانس موج مربعی شکل فرکانس شعله است . این فرکانس با فرکانس داخلی که از قبل توسط آنالایزر (discriminator) فرکانس قابل تنظیم است (Set) شده است ، مقایسه می گردد. هنگامیکه فرکانس شعله بیش از فرکانس تنظیمی باشد نشان دهندة مجوز فرکانس روشن می شود. در غیر اینصورت سیگنال مجوز فرکانس ارسال نمی گردد. فرکانس آنالایزر از 5/2 تا 103 Hz جهت فرکانس شعله سوخت های مختلف قابل تنظیم است . فرکانس تنظیمی داخلی می تواند از روی سوئیچ های روی برد تنظیم شود.

مدار Scanner :

بعد از تبدیل نور به یک سیگنال الکتریکی ، سیگنال شعله به سیگنال جریان تبدیل می شود این سیگنال از طریق ترمینال خروجی شمارة 5 به ماژون شدت نور در پانل در می آید . هنگامیکه تجهیز در حالت کار نرمال باشد ، سیگنال جریان ½ 33/0 mA به ترمینال No.1 ماژول شدت نور وارد می شود. در اینجا از طریق یک مقاومت 1 کیلوولت زمین شده به ولتاژ V1/2 33/0 تبدیل می شود.

مدار فرکانسی frequency Circuit :

سیگنال شعله از مدار شدت شعله و از طریق تبدیل رنج به مدار فرکانسی می رود پس از اینکه مؤلفه DC آن توسط خازن ایزوله شده مؤلفة AC این سیگنال به تقویت کنندة AC جهت تقویت بکار می رود سیگنال AC تقویت شده پس از عبور از یک تقویت کننده با بهرة متغییر وارد مدار تبدیل شکل موج بویلر می شود. مدار مبدل شکل موج مربعی سیگنال AC با دامنه بالاتر را به سیگنال مربعی شکل تبدیل می کند و آن را به مدار مقایسه فرکانسی می فرستد هنگامیکه این مقدار بیش از مقدار فرکانس ست داخلی باشد. سیگنال مجوز شعله در Set 2 ارسال می شود. VDC15 یعنی مجوز فرکانس داریم و oV یعنی نداریم فرکانس داخلی بین 103 تا 5/3 هرتز توسط 301 sw روی بردهای ماژول ست می شود.

درحقیقت تقویت کنندة AC با بهرة متغییر یک مدار فیلتر بالا گذر است هنگامیکه فرکانس زیر حد معین باشد یا ولتاژ استاندارد زیر 5/7 ولت باشد. مدار معادل مطابق شکل زیرخواهد بود.





دستگاه GAH ( Gas Air Heater ) و خنک کنندة روغن آن :

این دستگاه برای بالا بردن راندمان تولید برق در نیروگاه به کار می رود به شکل استوانه است و درون آن سلول هایی قرار دارد که توسط دو عدد موتور که به صورت Standby با همدیگر کار می کنند چرخانده می شوند.





هوا توسط فن های مکنده به نام (forced draft fan) FD FAN به داخل بویلر دمیده می شود و از داخل GAH عبور می کند. سلول از سوراخ های ریزی تشکیل شده است که گرمای بیشتری به خود جذب می کند بین هوا و دود هیچگونه تماسی وجود ندارد فقط دود سلول ها را داغ می کند و سلول داغ شده موقعی که می چرخد حرارت را به هوا منتقل می کند کنترل هر دو موتور گرداننده سلول ها توسط سیستم DCS صورت می گیرد. در مرکز سلول محوری قرار دارد که سلول حول آن می چرخد این محور باید همواره توسط روغن خنک کاری شود ( به دلیل وجود گرمای زیاد ) این محور دارای مخزنی برای ذخیره روغن می باشد روغن این مخزن توسط دستگاه خنک کنندة روغن GAH خنک می شود.

دستگاه خنک کنندة روغن GAH :

این دستگاه که به صورت اتوماتیک کار می کند از یک مدار فرمان PLC JP 1612 و همچنین از دو عدد کمپرسور ، دو عدد پمپ روغن ، یک فشار سنج ، یک فیلتر روغن و دو عدد دماسنج و چند عدد ولو تشکیل شده است . کمپرسورها و موتورهای پمپ روغن به صورت Standby با یکدیگر کار می کنند.

این دستگاه هنگامیکه دمای روغن مخزن از 50 درجه سانتیگراد بیشتر شود شروع به کار می کند و زمانی که دمای روغن به کمتر از 40 درجه سانتیگراد برسد آن را خاموش می کند. توسط سنسورهای دمایی که در ورودی و خروجی نصب شده است اطلاعات به PLC داده می شود.

اگر در یکی از موتورهای خطائی رخ دهد PLC آن را از مدار خارج می کند و موتور دیگر را وارد مدار می کند کمپرسور دوم فقط زمانی می تواند شروع به کار کند که دمای روغن ورودی به 65 درجه سانتیگراد رسیده باشد.

سیستم کنترل توربین (Digital Electro Hydraulin Control) DEH :

هستة مرکزی آن براساس میکروپروسسور می باشد که سیستم کنترل را با ساختار میکروپروسسصور ارتباط می دهد و از مزایای میکروپروسسورها مانند سرعت بالای مطالبة پردازش داده ها ، تشخیص لاجیک ، حافظه ، مقایسه و ... در آن استفاده شده است .



مبنای کار :

1- الکترونیک : پردازندة دیجیتال

2- هیدرولیک : که در آن از دو نوع روغن fire resotms oil , turbine oil استفده شده است .

هدف از بکار بردن این سیستم کنترل توربین بهبود و بالا بردن سطح اتوماسیون می باشد و سیستم هیدرولیکی به منظور بالا بردن توانائی سیستم بکار می رود.

قابلیت های DEH :

1- کنترل توربین بصورت اتوماتیک Automatic turbine control ATC :

براساس محاسبات فشرده و اطلاعات دریافتی .

2- بعنوان رابط بین سیستم کنترل ccs و سیستم سنکرونیزه کردن ASS عمل می کند.

CCS : Carinated Control System

ASS : Automatic Synchronization System

3- سیستم حفاظت افت فشار main steam

4- سیستم حفاظت فشار معکوس Back Pressure Protection

5- Run Box

6- سیستم کنترل Over Speed

7- ست جابجائی ولوها (Valve movment test)

8- نمایش گرافیکی وضعیت اجرائی

9- نمایش پارامترهای اجرائی – آلارم ها ، Lag پرینت ها

10- ارسال و نمایش تریپ ها

اصول سیستم کنترل :

هنگامیکه DEH در حال کار نیست دو سیستم کنترل Start – UP Valve و سنکرونایزر به صورت دلتی کار می کنند تا با حرکت acruator , intermadite relay pilot valve هیدرولیکی کنترل ولو HP,IP را به منظور کنترل سرعت و بار واحد کنترل نماید . همچنین سیستم هیدرولیکی دارای قابلیت ثابت نگه داشتن سرعت در حالت Loend rejection . حفاظت در برابر افزایش سرعت Over Speed و حفاظت خلاء می باشد و در صورت Over Speed شدن یا افت فشار روغن Lab Oil باعث تریپ اتوماتیک سیستم می شود .

مدلهای کنترلی DEH :

1- Btc : Basic turbine Control

2- ATC : Auto turbine Control



1-3) Start Up : ابتدا DEH بررسی می کند که ولو تغییر وضعیت electro hydrolic روی موقعیت الکتریکی باشد سپس DEH موتور start up ولو را به منظور چرخش معکوس و ری ست کردن emergency trippilot کنترل می کند و فشار لازم برای روغن را به منظور latchiry تامین می کند سپس DEH با کنترل start up valve باعث باز شدن HP,IP main steam stop valve می شود تا هنگامیکه Start up valve به حداکثر مقدار برسد بعد از آن که DEH اطمینان حاصل کرد که واحد لچ شده و start up valve کاملا باز است نوع کنترل روی مبدل electro hydroline عوض می شود .

2-3) Run up & Loding :

در سول Run up توربین ، DEH سیگنال پالس سرعت را از مولفد رلوکتانسی دریافت می کند و آن را به سرعت واقعیت تبدیل می نماید خطا بین سرعت واقعی و سیگنال تقاضای سرعت از طریق PID محاسبه خواهد شد و خروجی برای مبدل electro hydrolic ارسال می شود تا کنترل سرعت واحد را انجام دهد.

بعد از پارالل شدن واحد . DEH سیگنال فیدبک سرعت را به صورت سیگنال primary – fre quncy lodulating واحد و سیگنال فیدبک دریافتی از توان ، دریافت می کند. خطا بین مقدار واقعی توان و مقدار توان درخواستی از طریق PID محاسبه خواهد شد و به صورت خروجی به مبدل electro hydrolic ارسال می شود تا کنترل بار واحد را انجام دهد.

3-3) Process of Lead rejection :

DEH سیگنال oil breaker off را دریافت و از طریق لامیک اینتراپت Loadrejection آن را پردازش می کند سیگنال پردازش شده به مبدل electro hydrodic ارسال میشود و با بستن سریع کنترل ولو (Close Up) واحد را از over speed شدن محافظت می کند سرانجام DEH کنترل ولوها را به میزان بی باری باز می کند و همچنین از هر نوع لوپ کنترل سرعت دور واحد را درحالت ایده آل نگه می دارد.

4-3) Change ove if failure :

در حالت نرمال DEH خود محافظ است هنگامیکه اختلالی در DEH بوجود آید به صورت اتوماتیک به کنترل هیدرولیک تغییر وضعیت می دهد.

هنگامیکه DEH در حال کار است و فشار روغن آن را دنبال می کند DEH به منظور کنترل جابجائی سنگرون کننده سیگنال خروجی بالا یا پائین از هر نوع حلقة سنکرون کنندة برای آن می فرستد به این ترتیب فشار روغن در رنج نرمال آن را دنبال می کند و بنابراین در هنگام تغییر وضعیت از DEH به هیدرولیک هیچ نوسانی در سرعت یا فرکانس نخواهیم داشت .

ATC : کنترل start – down , strar up و بار تغییر را با درنظر گرفتن تنش و طول عمر انجام می دهد.

Start up , run up & Loading :

هنگامیکه DEH در موقعیت کنترل الکتریک است و BTC نرمال است و تریننگر در مدار است ATC بطور اتوماتیک شرایط Run-up را بررسی می کند و شیب run-up را انتخاب می کند و توربین را از تغییرات دما محافظت می کند و شیب تغییرات سرعت را در هنگام run – up کنترل می کند. هنگامیکه به شیب سرعت (rated speed) می رسد ATC به سنکرونایزینگ اتوماتیک سوئیچ می کند و BTC کنترل سرعت واحد را تا هنگام پارالل بر حسب درخواست ASS انجام خواهد داد. سپس با کنترل ATC برمی گردد و برحسب حالت واحد درخواست بار به ATC شیب بار و فرمان گرم شدن را به منظور دریافت ماکزیمم بار در ماکزیمم rate انتخاب می کنیم .

BTC : مد اصلی کنترل سیستم DEH است به صورت حلقه بسته سرعت و بار توربین را تشخیص می دهد و توابع حفاظت مختلف دارد.

1- میزان سرعت ، توان ، شیب سرعت و شیب بار را تعیین می کند ، BTC تشخیص می دهد که کدامیک از کامپیوترهای B,A در سرویس اند و اگر هر دو خطا داشته باشند سیستم به هیدرولیک تغییر وضعیت می دهد.

2- در هنگام سرعت بحرانی DEH به طور اتوماتیک شیب run – up را اصلاح می کند و بدین ترتیب واحد را از دور بحرانی می گذراند و بعد از عبور از سرعت بحرانی ، شیب run – up را تغییر داده و مقدار جدیدی برای آن انتخاب می کند منحنی تجربی و سرعت بحرانی واحد می تواند بصورت on line اصلاح شود و تغییر یابد.

3- این قابلیت وجود دارد که در مد (DEH) BTC ماکزیمم مقدار over speed را ثبت کند.

- منبع تغذیه

- NCS 80

- کامپیوتر صنعتی IP

پنجمین کابینت ------< منبع تغذیه است .

شکل 11 بلوک دیاگرام سخت افزاری سیستم می باشد میکرو کامپیوترهای B,A به صورت redan dant کار می کنند یعنی اینکه فقط یکی از آنها در مدار است و دیگری بحالت آماده باش قرار دارد و اگر مشکل برای کامپیوتر A پیش بیاید کامپیوتر B بصورت اتوماتیک جای کامپیوتر A را می گیرد و این دو کنترل سرعت و بار توربین را انجام می دهند.

کامپیوتر C برای کنترل اتوماتیک است اطلاعات از هر نوع BIT Bus بین 3 کامپیوتر A,B,C مبادله می شود شکل 12 پیکر بندی سیستم A/B و شکل 13 پیکر بندی سیستم C را نشان می دهد دو کامپیوتر که به صورت رزرو هستند بدین صورت عمل می کنند که سیگنالهای محلی مانند سیگنال ورودی ON,Off و سیگنالهای آنالوگ و سیگنال سرعت به صورت لحظه ای وارد کامپیوترهای B,A می شوند و سپس B,A به صورت همزمان کارکرده و همان برنامه را اجرا نموده و به صورت لحظه به لحظه سیگنالهای کنترل خروجی آنالوگ و نیز ON,Off ارسال می کنند سپس از میان جفت کامپیوترها انتخاب می شود که آیا خروجی کامپیوتر A عمل کنترل را انجام دهد و B به عنوان کامپیوتر رزرو عمل کند یا بالعکس .

ارتباطات از طریق پورت های سری بین کامپیوترهای B,A و نپل اجرائی (Operation Panel) و صفحه نمایش (display panel) و پرینتر انجام می شود و هر دو کامپیوتر را به بقیه اجزاء ارتباط می دهد CPU به کار رفته از نوع 80286 است .

که برای کامپیوترهای C,B,A از آن استفاده شده است .

برد ارتباط سری ------< ISBC 53u

کارت شبکه ---------< ISBC 34u

IOCM هر نوع تغیر داخلی آدرس را تشخیص می دهد و سیگنال های اطلاعات (data) و کنترل بین D Bus , rnultibus توسط کارت IP تبادل می شود کامپیوتر 286 کار کنترل مدول های IP را به وسیله مدول D Bus , rocm انجام می دهد . سیگنال های ورودی ON – Off و آنالوگ از field و خروجی های ON/Off و آنالوگ به field همگی توسط مدول کارت های IP می باشد 3 کانال از سیگنال های سرعت از پروسهای سرعت می آیند و به برد حفاظت over speed فرستاده می شوند بعد از پردازش لاجیک 2 از 3 سیگنال های سرعت تابع OPC می تواند توسط سخت افزار تشخیص داده شود.

و حفاظت فشار روغن و ... می باشد و به محض over speed شدن واحد یا کاهش فشار روغن بصورت اتوماتیک باعث تریپ خواهد شد.

کنترل DEH خروجی مبدل هیدرولیک است که توسط relayamplitirer تقویت شده و توسط گاورنر ولوهای HP & SP سرعت و بار واحد را کنترل می کند.

هنگامیکه DEH در حال کار است اگر فشار روغن دنبال کننده ار زنج نرمال خارج شود و DEH سیگنال خروجی تغییر سرعت ( افزایش یا کاهش ) ارسال می کند و کنترل فرمان تغییر سرعت از طریق مدار تغییر سرعت (Speed Changer) به منظور دنبال کردن فشار روغن انجام شود و بنابراین در رنج نرمال می توان مطمئن بود که هیچ نوسان سرعت یا نوسان بار در هنگام تغییر وضعیت به سیستم هیدرولیک در پدید آمدن مشکل برای سیستم DEH وجود ندارد.

مشخصات فنی :

1) رنج اندازه گیری بین صفر تا چهار هرتز

2) منبع تغذیه بین نیم تا پنجاه هرتز ( 23 تا 230 ولت )

3) زمان بالانس حرارتی ، 30 دقیقه

4) تلفات حرارتی ، کمتر از 500 VA

5) ولتاژ خروجی کنتاکت ها 230 AC , 2 A و 30 DC, 1A

6) سیگنال خروجی بین 4 تا 20 Ma.Dc یا بین صفر تا ده DC

JQG3 یک سیستم نشان دهندة نشتی هیدروژن برای توربوژنراتور است . این سیستم توسط 8 لوله نمونه گیری به نقاط ذیل وصل شده و نمونه را از آن ها می گیرد : 2 نقطه از ناحیه سیل روغن برگشتی در دو یاتاقان ژنراتور ، یک نقطه تست در تانک آب استاتوری ، سه نقطه تست در باس بارهای بسته و دو نقطه تست در نزدیکی CT ها . این لوله ها به صورت مجزا می باشند. توسط یک پمپ داخلی نمونه ها از این نقاط مکش می شوند هر 5 دقیقه یک بار یک رله on/OFF به ولو مغناطیسی فرمان باز و بسته شدن می دهد و نمونه گیری ها جهت ثبت اطلاعات از نقاط تست به صورت مجزا صورت می گیرد. به منظور حصول اطمینان از صحت اندازه گیری قبل از ورود نمونه های گاز یک سیستم تنش آماده سازی وجود دارد .

آنالایزر هیدروژن از نوع RD-10 S است سیگنال خروجی بین صفر تا ده Mn Dc و یا بین 4 تا 20 mA Dc است .

اجزاء تجهیز :

1- بدنه اصلی :

بدنة اصلی آنالایزر طوری طراحی شده است که کامل و مجتمع باشد . یا یک پوستة آلومینیومی آب بندی می شود. تمامی تجهیزات ( به جز تجهیزات تنظیم ) روی فلنج به صورت مناسبی تعبیه شده اند که داخل پوسته قرار می گیرند.





تمامی تنظیمات از بیرون صورت می گیرند ، سمت راست بدنة تجهیز 2 مسیر برای عبورکابلها وجود دارد.

2- ستون اندازه گیری :

3- ترانسمیتر مهمترین بخش آنالایزر است و بخش اصلی ترانسمیتر یک مدار پل نامتعادل است که از سنسور فیلامان پلاتین ساخته شده است با تبدیل مقاومت حرارتی به سیگنال الکتریکی مدار پل به اندازه گیری غلظت گاز می پردازد. سنسور از یک لوله شیشه ای که یک فیلامان که یک فیلامان پلاتین با خلوص بالا و آب بندی کامل در آن است تشکیل شده است. این تراتسمیتر در برابر خوردگی و فشارهای مکانیکی بالا مقاوم است . مدار گاز داخل ستون اندازه گیری به صورت گیرنده و دهنده گاز است . تمام لوله کشی ها و فلومترها از مواد مقاوم در برابر خوردگی ساخته شده اند.

ترانسمیتر داخل بدنه ، سمت راست نصب شده است ، مدار پل اندازه گیری ، وایر گرمساز کنترلر حرارتی و سنسور حرارتی همگی به ساختار تنظیم / کنترل با دایرهای ( سیم ) داخلی ستون اندازه گیری تصل می شوند پس از مدت زمان طولانی بهره برداری موادر پل ممکن است آلوده شود و منجر به انحراف از نقطه صفر و عدم حساسیت شود. در صورت چنین اتفاقی تمیز کاری باید انجام گیرد با ریختن الکل در ورودی و خروجی ستون اندازه گیری آن را تخلیه کرده ، تمیز می کنیم ، بلوک پل که از فولاد محکم ساخته شده است هم می تواند توسط ، آستن پاک شود.

3-منبع تغذیه / ترموستات :سمت چپ داخل بدنه ساختار تنظیم کننده ولتاژ و کنترلر حرارتی وجود دارد. روی PCB این ساختمان 4 فیوز اصلی ( برد مدار چاپی PCB : Printed eircuit Board ) در قسمت پائین ، LED نشان دهندة منبع تغذیه در سمت چپ ، بلوک ترمینال با برچسب هشدار دهندة قبل از وایرینگ بدنه Cap باید جدا شود وجود دارند. این ساختمان با کابل منبع تغذیه و ترمینال پلاک مناسب به بخش کنترل وصل می شود.

رگولاتور منبع تغذیه از نوع سری می باشد. به دلیل اینکه ولتاژ کاری 13 ولت است ولتاژ خروجی رگولاتور نیز روی 13 ولت تنظیم شده است . جهت اطمینان از عملکرد صحیح منبع تغذیه از تجهیزات مرغوبی در این سیستم استفاده شده است جریان کاری پل 180 Ma است که توسط پتانسیومتر W1 می تواند تنظیم شود. ولتاژ روی پل حدود 7/9 ولت است . استفاده کننده می تواند این ولتاژ را از ترمینال تست که با Vo مشخص شده است ، اندازه گیری کند.


گزارش کارآموزی در نیروگاه توس

گزارش کارآموزی در نیروگاه توس در 69 صفحه ورد قابل ویرایش
دسته بندی برق
بازدید ها 7
فرمت فایل doc
حجم فایل 35 کیلو بایت
تعداد صفحات فایل 69
گزارش کارآموزی در نیروگاه توس

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کارآموزی در نیروگاه توس در 69 صفحه ورد قابل ویرایش


فهرست مطالب

عنوان صفحه

نیروگاه ( توضیحات کلی ) .................................................................................. 1

نیروگاه توس ......................................................................................................... 8

بویلر....................................................................................................................... 10

توربین.................................................................................................................... 14

ژنراتور.................................................................................................................. 39

ترانسفورماتور..................................................................................................... 50

سیستم سوخت رسانی ...................................................................................... 57

کندانسور هوایی................................................................................................... 62

آزمایشگاه و تصفیه آب ..................................................................................... 62

اتاق فرمان............................................................................................................. 63

منابع....................................................................................................................... 66


نیروگاه
نیروگاه محل تولید انرژی الکتریکی می باشد .نیروگاه های مدرن بر حسب نوع انرژی مورد مصرف عبارتند از : نیروگاه های حرارتی ، آبی ، هسته ای و نیروگاه هایی که از انرژی باد و یا حرارت درونی زمین استفاده می کنند . در این میان نیروگاه های حرارتی ( TPS ) و آبی ( HEPS ) از معمولترین انواع در صنعت تولید برق می باشند .
نیروگاه حرارتی
نیروگاه حرارتی به کلیه ی نیروگاه هایی اطلاق می شود که در واحدهای آن با احتراق سوخت های جامد ، مایع و یا گاز در بویلر و یا در خود محرک اولیه ( مانند دیزل ها و توربین های گازی ) تولید انرژی حرارتی و سپس الکتریکی صورت می پذیرد . انواع نیروگاه حرارتی بر حسب نوع سوخت عبارتند از : ذغال سوز ( اعم از ذغال به لاشه ای یا پودر شده ) ، گازوئیل سوز ( دیزل ) ، نفت سوز ، گاز سوز و توربین گازی ( که در آن احتراق گاز مستقیما در توربین صورت می گیرد .
قسمت عمدهای از نیروگاه های حرارتی که به عنوان تولید کننده های اصلی انرژی الکتریکی طراحی می شوند از نوع کندانسوردار می باشند . این نیروگاه ها عموما مجهز به واحدهایی با قدرت 200 تا 800 مگا وات بوده و راندمان حرارتی آن ها از میزان 40 تا 42 درصد تجاوز نمی کند ، و معمولا در هر کشور پرقدرت ترین نیروگاه ها را تشکیل می دهند .
نوع دیگری از نیروگاه های حرارتی که به نام ترموالکتریک مشهورند جهت تولید مشترک انرژی حرارتی ( به صورت بخار یا آب داغ ) و انرژی الکتریکی طراحی و نصب می شوند . این تولید مشترک موجب افزایش راندمان حرارتی واحدهای مذکور تا میزان 65 الی 70 درصد می باشند .
نیروگاه آبی
از قدیم استفاده از انرژی ذخیره شده در آب به صورت های مختلف از جمله آسیاب های آبی مرسوم بوده است . با پیدایش صنعت برق کوشش های زیادی در جهت به کارگیری هر چه بیشتر انرژی آبی و تبدیل آن به انرژی الکتریکی معطوف گردیده و در این راه پیشرفت های زیادی هم حاصل شده است . ارزش نیروگاه های آبی بر این است که از تاسیسات ایجاد شده عمدتا می تواند در جهت اهداف صنعتی و کشاورزی نیز استفاده برد . معمول ترین نوع ذخیره و کنترل آب ، ایجاد سدها و آب بندها می باشد .
گرانی قیمت تاسیسات ذخیره و انتقال آب با مسایل خاص سیاسی و اجتماعی آن ( زیر آب رفتن روستاهای مجاور ، از بین رفتن مقداری از زمین های کشاورزی و ... ) معمولا ایجاد سد صرفا جهت گرفتن انرژی الکتریکی را توجیه اقتصادی نمی نماید . چنانچه مطالعات ایجاد چنین تاسیساتی را توجیه نماید ، ارزش نیروگاه آبی دو چندان می گردد .
نیروگاه های آبی در مقایسه با سایر نیروگاه ها ( حرارتی ، گازی ، دیزلی ) دارای مزایای بسیاری می باشد که از جمله بالا بردن راندمان ، نداشتن هزینه های مربوط به مسایل سوخت ، قرار گرفتن سریع در مدار و نداشتن مسایل آلودگی هوا را می توان نام برد .
در مناطقی که منابع آب امکان خارج ساختن دائمی آب را از سدها را بدهد ، این نیروگاه ها به طور دائم مورد استفاده واقع می شوند وحتی در بعضی موارد به عنوان پایه تولید انرژی الکتریکی به علت داشتن قابلیت اطمینان بالا قرار می گیرد . اما در مواردی که استفاده آب در صنعت و کشاورزی و شرب در اولویت بالاتری نسبت به تولید انرژی الکتریکی باشد برنامه را بر اساس نیاز های آب مشروب و کشاورزی تنظیم می نمایند . بدین معنی که نیازهای آبی در یک پریود مشخص مثلا 24 ساعت را در ظرف چند ساعتی که شبکه به انرژی الکتریکی بیشتری نیازمند است ، از سد اصلی خارج ساخته وارد سد تنظیمی می نمایند یعنی توربین های آبی به کار می افتد . سپس با برنامه ریزی که می شود آب از سد تنظیمی به تدریج جهت دیگر اهداف ( کشاورزی ، صنعت و شرب ) وارد شبکه های انتقال و توزیع با تصفیه خانه های مربوط می گردد .
چنانچه که گفته شد می توان با استفاده از انرژی آب رودخانه ها و آبشارها و احداث سد در مسیر رودخانه توسط توربین های آبی ، ژنراتور را چرخاند و الکتریسیته تولید نمود .
سدهای آبی که ساختمان های مختلفی دارند می توانند در مسیر رودخانه احداث شده و با نصب تجهیزات یک نیروگاه آبی علاوه بر مصارف کشاورزی برای تولید برق استفاده کرد .
آب دریاچه در صورت اضافه شده از قسمت بالای سد سر ریز می کند . به علت آن که مصارف آب کشاورزی و تقاضای برق در زمان های مختلفی صورت می گیرد برای جلوگیری از هدر رفتن آب پس از سد اصلی یک سد کوچک به نام سد تنظیمی استفاده می گردد و در صورت نیاز به آب کشاورزی دریچه های این سد تنظیمی باز می گردد . معمولا تاسیسات نیروگاه داخل ساختمان سد می باشد .
با توجه به دبی آب و ارتفاع آن نوع توربین نصب شده فرق می کند که می توان از انواع پلتون ، فرانسیس یا کاپلان باشد .
راندمان نیروگاه های آبی بالا می باشد ( حدود 80 الی 90 درصد ) و راه اندازی آن ساده ( 14 الی 15 دقیقه ) انجام می گیرد .
نیروگاه اتمی
نیروگاه های هسته ای بخاطر تشابه در نوع انرژی نهایی که همان انرژی حرارتی است عملا در رده ی نیروگاه های حرارتی قرار می گیرند ، ولی به لحاظ ویژگی های خاص سوخت هسته ای آن را نوع جداگانه ای به حساب می آورند . اساس کار نیروگاه اتمی و بخاری یکی است فقط به جای دیگ بخار ، در نیروگاه اتمی از یک رآکتور استفاده شده ، آب را در رآکتور توسط انرژی حاصل واکنش های هسته ای ( فیوژن ) گرم شده وبخار می گردد که این بخار می تواند توربین را بچرخاند و در نتیجه محور ژنراتور به حرکت آمده و الکتریسیته تولید می گردد .
نیروگاه بخار
یکی دیگر از روش های تولید انرژی استفاده از نیروی بخار می باشد که در این نوع نیروگاه بخار تولید شده در بویلر ( دیگ بخار ) به داخل توربین جریان داده می شود و باعث چرخش آن گشته و اگر شافت توربین با یک ژنراتور وصل گردد می توان از نیروی چرخشی آن انرژی الکتریکی تولید کرد . بخار پس از عبور از توربین به کندانسور ( چگالنده ) رفته و توسط آب خنک کن تقطیر و به صورت آب در می آید .
نیروگاه های بخار برای بارهای اصلی ( پایه ) به کار می روند ( چون راه اندازی ساده و آسانی ندارند ) و عمر آن ها نسبت به نیروگاه های گازی بیشتر ( 25 الی 30 سال ) است .
اجزای اصلی یک نیروگاه بخار عبارتند از :
بویلر ( دیگ بخار )
توربین بخار
کندانسور
پمپ تغذیه
نیروگاه دیزلی
در نیروگاه های دیزلی قوه محرکه ژنراتور یک موتور درون سوز دیزلی است .
امروزه کمتر از نیروگاه های دیزلی برای نیروگاه پایه استفاده می کنند و بیشتر برای مواقع اضطراری و احتمالا بار ماکزیمم می باشد . در حال حاضر در مناطقی از ایران که به شبکه سراسری وصل نیست از نیروگاه های دیزلی استفاده می شود . قدرت تولیدی آن ها به طور معمول تا 5000 کیلو وات می باشد .
نیروگاه گازی
هوای آزاد توسط یک کمپرسور فشرده شده و سپس همراه سوخت در اتاق احتراق محترق شده و دارای درجه حرارت بالا می گردد . حال این گاز پر فشار و داغ وارد توربین شده ومحور ژنراتور را می گرداند و سپس از اگزوز ( خروجی ) توربین به بیرون رانده می شود . توان گرفته شده از توربین معمولا به محور ژنراتور و کمپرسور منتقل می گردد . حدود یک سوم این توان تبدیل به انرژی الکتریکی در ژنراتور می گردد و بقیه جهت چرخاندن محور کمپرسور و تامین هوای فشرده جهت توربین نصرف می شود . به همین خاطر راندمان توربین گازی پایین و در حدود 27 درصد می باشد و برای بار پیک در شبکه استفاده می شود .
اصول نیروگاه گازی تقریبا از لحاظ مراحل مانند یک موتور چهار زمانه است یعنی چهار مرحله دارد که عبارتند از :
تراکم توسط کمپرسور
احتراق که در اتاق احتراق انجام می گیرد
مرحله کار یا انبساط در توربین
تخلیه که از دودکش صورت می گیرد
هوا با شرایط محیط کار که عبارتند از دما وفشار سایت محل نصب توربین گاز وارد کمپرسور می شود و در آن جا بر روی هوا کار انجام می شود . فشار و دمای هوای خروجی از کمپرسور بستگی به نوع توربین گاز دارد و معمولا فشار آن بین 9.5 تا 14 برابر ورودی و دمای آن در حدود 300 تا 350 درجه سانتی گراد می باشد . این هوا با این شرایط وارد اتاق احتراق شده و در آن جا طی یک فرآیند فشار ثابت دمای آن افزایش می یابد ( حدود 900 تا 1350 ) محصولات احتراق وارد توربین شده و روی پره های توربین با از دست دادن انرژی خود کار انجام می دهد و در نهایت با دمایی در حدود 450 تا 600 درجه سانتی گراد از توربین خارج می شود و به جو تخلیه می گردد .


نیروگاه توس
نیروگاه توس با 4 واحد بخاری 150 مگاواتی از نیروگاه­های ممتاز کشور و یکی از بزرگترین مراکز تولید برق در خراسان می­باشد. این نیروگاه در 12 کیلومتری شمال غربی مشهد مقدس در جوار بارگاه ملکوتی حضرت علی ابن موسی الرضا (ع) و دامنه کوه­های بینالود در نزدیکی شهر توس مدفن شاعر بلندآوازه ایران زمین حکیم ابوالقاسم فردوسی واقع گردیده و نام نیروگاه توس بدین دلیل روی ریشه­ای فرهنگی و سابقه­ای کهن دارد.
قرارداد احداث نیروگاه در مرداد ماه 1357 با شرکت های براون باوری و پاتله منعقد گردید ولی در عمل تا پیروزی انقلاب شکوهمند اسلامی فعالیت قابل ذکری انجام نگرفت تا این که قرارداد شرکت آلمانی براون باوری در سال 1360 بررسی و اصلاح گردید و پروژه در اواخر همان سال فعال شد . همچنین در سال 1361 قرارداد بخش بویلر نیروگاه با شرکت اتریشی واگنربیرو منعقد و عملیات اجرایی آن آغاز گردید.
نخستین واحد نیروگاه در آبان 1364 و دیگر واحدها نیز تا پایان سال 1366 به شبکه سراسری به شبکه سراسری پیوسته و مورد بهره برداری قرار گرفت.
از ویژگی های این نیروگاه استفاده از کندانسور هوایی است که در آن به کارگیری هوا به عنوان عامل خنک کننده (جایگزین آب) از اهمیت بالایی برخوردار است چرا که با توجه به اهمیت جهانی ذخایر آب، این سیستم، از اتلاف آب و کاهش سطح سفره­های آب زیر زمینی پیش گیری می­نماید.


پوسته خارجی توربین فشار متوسط
پوسته خارجی از چدن فولادی ساخته شده است و به طور افقی در ارتفاع محور توربین فلانچ شده است (با استفاده از پیچ و مهره های مخصوصی که طبق دستور داده شده محکم می­شوند).
قسمت بالائی پوسته به وسیله دو تکیه گاه در هر طرف روی پدستال های یاتاقان نگه داشته می شود.
محرک های روی پوسته فشار متوسط عمل می کنند راه راه تکیه گاهها و گوه های نگهدارنده به پدستالهای یاتاقان منتقل می شوند و به فنداسیون هدایت می گردد.
تغییرات درجه حرارت در طی راه اندازی، در روی موقعیت عمودی پوسته فشار متوسط مربوطه به روتور توربین فشار متوسط تاثیر ندارد چون تکیه گاهها پوسته را به خوبی در مرکز خط روتور نگه داشته اند در طرف ورود بخار ، پوسته توربین فشار متوسط روی پدستال یاتاقان تراست تکیه داده شده و در طرف خروج بخار به پدستال یاتاقان (ما بین توربین فشار متوسط و فشار ضعیف) تکیه داده است.
(هر دو سر پائینی پوسته خارجی با دو تکیه گاه نصب شده است که شامل یک وسیله حفاظتی است که از حرکت پوسته جلوگیری می کند .
(این تکیه گاهها همچنین در طی مونتاژ دمونتاژ مورد استفاده قرار می گیرد).
در طی مونتاژ قسمت پائینی پوسته به کمک پیچهای تنظیم ،تنظیم می شود و باید روی پدستال های یاتاقان نگه داشته شود.
در مجموع انتهای جلویی تکیه گاهها، مانند پوسته برای وصل کردن یک وسیله تغییر مکان به سوراخ های رزوه دار مجهز شده است که به حرکت محوری توربین در طی مونتاژ و دمونتاژ اجازه می دهد. پوسته توربین فشار متوسط در جهت محور به وسیله گوه های عمودی راهنمایی می شود.
جای خارهای گوه ها در هر انتهای قسمت پایینی پوسته فشار متوسط در سطح عمودی محور توربین قرار گرفته است گوه ها به پدستال هایی یاتاقان پیچ شده اند .
قسمت بالائی فشار متوسط داد و فلانچ اتصال لوله های ورودی ،دو فلانچ اتصال برای لوله های سرتاسری بالا ، نصب شده است در روی طرف خارجی پوسته امکاناتی برای محکم کردن تروکوپل ها، دو سوراخ برای اتصال وزنه های بالانس روتور فشار متوسط یک اتصال برای لوله بخار سرد بالانس پیستون تهیه شده است.
قسمت پائینی توربین فشار متوسط با دو اتصال فلانچی برای لوله های ورودی ، یک اتصال فلانچی برای برداشتهای 2 و3 و 4 به ترتیب، و یک خروجی بخار برای بالانس پیستون، یک فلانچ در طرف جلو و یکی در طرف عقب برای بخار آب بندی و مسیرهای خروجی و همچنین یک اتصال تخلیه برای جریان ریزش بالانس پیستون نصب شده است.
در مجموع ترموکوپل ها با امکانات مسدود کننده تهیه شده است بعلاوه یک لوله اتصال برای بخار زنده و بخار خروجی فلانچ گرم کن در هر طرف فلانچ های جدا کننده در داخل بخش ورودی تهیه شده است یک سوراخ برای پیچ تنظیم تهیه شده است که پوسته بالانس پیستون را در موقعیت مرکز محور نگه می دارد.
حمل کننده پره های راهنما (فشار متوسط)
حمل کننده های پره های راهنما (قرینه ایی به طور گردشی) به وسیله تکیه گاههای پوسته خارجی تکیه داده است و طرف فشار بیشتر آب بندی شده است.
حمل کننده پره های راهنمای شماره در پوسته خارجی روی چهار تکیه گاه تکیه داده شده است در صورتیکه حمل کننده پره های راهنما روی دو تکیه گاه تکیه می دهد.
ارتفاع به وسیله صفحه نازک مخصوص تنظیم می شود حمل کننده پره های راهنما شامل یک قسمت بالائی و یک قسمت پائینی است که به طور افقی در ببالای محور توربین به یکدیگر فلانچ شده اند.
با استفاده از پیچ و مهره های مخصوص که طبق دستور داده شده محکم می شوند پره های راهنما داخل شیارهایی که توسط تراشکاری روی روتور ایجاد شده است محکم می شوند.
هر پره راهنما یک ریشه با قلاب تکی دارد و صفحات پوشش با یک برجستگی آزاد با سیلهایی لابیرنتی آب بندی شدهاند و در داخل روتور به شکل یک آب بندی لابیرنتی در گیری شده اند.
بعد از ردیف هشتم شانزدهم و بیست و یکم ، جریانهای بخار را از مسیر برداشتهای 2 و3 و 4 منشعب می شود از مسیر لوله های حلقه و ار و لوله های به پیش گرم تنهای آب بندی هدایت می شود که آنها به پوسته خارجی نصب شده است.
روتور توربین فشار متوسط
روتور توربین فشار متوسط در داخل دارای فضای خالی می بباشد شافت تو خالی از سه قسمت که به یکدیگر جوشکاری شده­اند ساخته شده است.
بالانس پیستون ، محل یاتاقان ترکیبی ژورنال تراست و فلانچ کوپلینگ در انتهای روتور واقع شده اند فلانچ کوپلینگ در انتهای خروجی قرار گرفته است روتور های توربین فشار قوی فشار متوسط و فشار ضعیف به وسیله فلانچ ها دقیقا کوپل می شوند.
پره های داخل شیارهایی که توسط تراشکاری روی روتور ایجاد شده اند محکمی می شوند آنهایی که با پره های راهنما و حمل کننده پره های راهنما درز گیری شده اند (سیلهای دو قطعه­ای صفحات پوشش در ترکیب با خطوط آب بندی ) تشکیل سیل های لابیرنتی می دهد.
تهیه بخار خنک کن برای روتور توربین فشار متوسط
برای خنک کردن قسمت بالانس پیستون که در ورودی بخار رهیت قرار دارد یک شاخه بخار خنک کن از خروجی پوسته فشار قوی برداشته می شود.
جریانهای بخار خنک کن از راه یک خط اتصال از میان انتها و ورودی بالانس پیستون از راه یک منطقه حلقه ای ریخته گری شده و یک شیار حلقه ای در داخل پوسته بالانس پیستون فشار متوسط به قسمت بالانس پیستون توربین فشار متوسط وارد می شود .
سیلینگ داخلی به وسیله بخش سیلینگ بین بالانس پیستون فشار متوسط و ورودی بالانس پیستون تهیه شده است.
در مسیر اتصال بین پوسته های فشار قوی و فشار متوسط یک وسیله جدا کننده نصب می شود که به وسیله سیستم کنترل به راه می افتد.
بالانس پیستون توربین فشار متوسط
بالانس پیستون توربین فشار متوسط به فشار محوری روتور کمک می کند به خاطر فشار های مختلفی که روی سطوح باردار بالانس پیستون عمل می کند.
فشار بخار رهیت در انتهای پره و فشار خروجی توربین فشار متوسط در انتهای سیل شات = فشار خروجی بالانس پیستون ، یک نیرویی را نتیجه می دهد که یک فشار به کار می رود در جهت مخالف جریان بخار ورودی روتور ، بنابراین فشار روتور تقریبا بالانس می شود.
در طراحی بالانس پیستون توربین فشار متوسط یک رینگ راهنمای ریخته گری تهیه شده است که در بخش ورودی بخار رهیت واقع گردیده است . هدف این رینگ راهنما هدایت کردن بخار رهیت به پره های عکس العملی و حمل کننده پره های راهنمای فشار متوسط است و مانع از جهش مستقیم بخار رهیت در مقابل روتور توربین فشار متوسط می شود.
بعلاوه اولین ردیف پره هایی راهنما و صفحات پوشش در شیار دور داده شده راهنمایی می شوند .
سیل های لابیرنتی بالانس پیستون شامل رینگ های چند تکه متحرک که در پوسته بالانس پیستون نصب می شود. و در مرکز روتور تقسیم شده اند و سیل های راه راه که در روتور آب­بندی شده اند مانند سیل های شافت دارای یک طرح یکسانی هستند .
موقعیت مرکزی پوسته بالانس پیستون به وسیله پیچ قابل تنظیم مرتب می شود و ارتفاع به وسیله دو گوه که به پوسته خارجی تکیه داده است تنظیم می شود.
توقف محور نیز به عنوان سیلینگ با بخش داخلی بخار رهیت کمک می کند.

سیلهای شافت توربین فشار متوسط
روش بهره برداری و ساختمان سیل های شافت توربین فشار متوسط شبیه سیل های شافت توربین فشار قوی است.
سیل شافت توربین فشار متوسط فقط یک سیستم بخار آب بندی و یک سیستم بخار آب بندی و یک سیستم خروجی دارد اما سیستم بخار نشتی ندارد.
ورودی های فشار متوسط
چهار ورودی از اتصال بین لوله های ورودی جریان بخار از کنترل والو ها و استپ والو های ترکیبی و پوسته فشار متوسط وجود دارد .
آنها به پوسته خارجی با استفاده از پیچ و مهره های مخصوص فلانچ شده اند فلانچ اتصال بین برآمدگی های ورودی و پوسته خارجی فشار متوسط به وسیله واشر های دینگر مخصوص سیل شده است.


گزارش کارآموزی بررسی نیروگاه سیکل ترکیبی شهید رجایی قزوین

گزارش کارآموزی بررسی نیروگاه سیکل ترکیبی شهید رجایی قزوین در 61 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 7
فرمت فایل doc
حجم فایل 60 کیلو بایت
تعداد صفحات فایل 61
گزارش کارآموزی بررسی نیروگاه سیکل ترکیبی شهید رجایی قزوین

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کارآموزی بررسی نیروگاه سیکل ترکیبی شهید رجایی قزوین در 61 صفحه ورد قابل ویرایش


فهرست


صفحه

مقدمه


3

مشخصات نیروگاه سیکل ترکیبی شهید رجایی


10



بویلر Boiler




اجزاء تشکیل دهنده بویلر


20

Feed water heater


20

Dearator


23

Economizer


25

Drum


27

Down commer and evaprator


32

Super heater


35

Blow Down


40

Diverter Damper


41



توربین Turbine




فوندانسیون


45

پوسته CASE


47

روتور Rotor


49

پره ها Blades


51

کوپلینگ ها Couplings


56

یاتاقان ها Bearings


56

گلندهای توربین Turbine Glands


58



کندانسور Condansor




اکسترکشن پمپ Extraction Booster Pump


65

تصفیه آب خروجی از کندانسور Condansor Booster Pump


68

Main ejector


72

گلند کندانسور Gland condansor


75



سیستم آب خنک کن Cooling




برج های خنک کن و مسیرهای آن Cooling and Cooling Tower


87

پمپ های گردش آب در برج های خنک کن C.W.P


91




مقدمه :

مصرف انرژی در دنیای امروز به طور سرسام آوری رو به افزایش است . بشر مترقی امروز ، برای تولید آب آشامیدنی ، برای تولید مواد غذایی و برای کلیه کارهای روزمره خود به استفاده از انرژی نیاز دارد و بدون آن زندگی او با مشکلات فراوانی روبرو خواهد بود .

طبق برآوردهایی که دانشمندان می نمایند ، از ابتدای خلقت تا سال 1230 ه .ش ، بشر معادل کیلووات ساعت و در فاصله 1230 تا 1330 نیز کیلووات ساعت انرژی مصرف نموده است.

و پیش بینی می شود که فاصل? 1330 تا 1430 مصرف انرژی تا کیلو وات ساعت باشد.

امروزه قسمت اعظم مصرف انرژی به وسیله کشورهای صنعتی بوده و هر چه کشوری صنعتی تر بوده و از نظر اقتصادی مرفه تر باشد مصرف انرژی سرانه آن نیز بیشتر خواهد بود. به طوری که رابطه مستقیمی بین مصرف انرژی به خصوص مصرف انرژی الکتریکی و درآمد سرانه هر کشوری وجود دارد. با افزایش روزافزون مصرف انرژی در دنیا بشر همواره در جستجوی منابع جدید و یافتن راههای اقتصادی استفاده از آنها برای تأمین احتیاجات خانگی و صنعتی بوده است و در این بین، چون انرژی الکتریکی صورتی از انرژی است که راحت تر به انرژی های دیگر ( قابل استفاده بشر) تبدیل می شود و انرژی تمیزی از نظر ضایعات می باشد ، تلاش های بشری بیشتر در زمینه تولید انرژی الکتریکی می باشد . چند نمونه از منابع شناخته شده انرژی که خداوند در اختیار بشر قرار داده است و بشر می تواند از آن برای تولید انرژی الکتریکی استفاده کند عبارتند از :

1- انرژی سوخت های فسیلی 2- انرژی آب 3- انرژی باد

4- انرژی واکنش های هسته ای 5- انرژی جزر و مد امواج دریا

6- حرارت زیر پوست? زمین

که هر یک از این انرژیهای برای اینکه بتواند به انرژی الکتریکی تبدیل شود باید مراحلی را طی کند که مسائل و مشکلات تولید برق برای بشر امروز نیز در طی همین مراحل است. برای مثال یکی از راه هایی که بشر از انرژی سوخت برای تولید سوخت استفاده می کندایجاد نیروگاههای حرارتی بخار، گازی و یا سیکل ترکیبی می باشد. که فرایند های زیادی را شامل می شود و تمام این فرایند ها در مجموع سیکل نیروگاه بخار تولید برق (Power Plant) را تشکیل می دهد که موضوع اصلی گزارش ما نیز می باشد.

انواع نیروگاه ها :

در حال حاظر نیروگاه هایی که برای تولید برق استفاده می شوند و متداول هستند را می توان به 6 دسته طبقه بندی کرد :

1- نیروگاه دیزلی

2- نیروگاه آبی

3- نیروگاه اتمی

4- نیروگاه گازی

5- نیروگاه بخاری

6- نیروگاه ترکیبی

از آنجا که اکثر نیروگاه های تولید برق در ایران و همچنین مهمترین منبع تولید برق در کشور نیروگاه های گازی، بخاری ، آبی و یا سیکل ترکیبی هستند به اختصار در مورد آنها توضیحی داده می شود :

نیروگاه گازی :

اصول کار نیروگاه گازی بدین صورت است که هوای آزاد توسط یک کمپرسور فشرده شده و سپس همراه سوخت در اتاق احتراق ، محترق شده و دارای درجه حرارت بالا می گردد. حال این گازهای پر فشار و داغ وارد توربین شده و محور ژنراتور را می گرداند و سپس از اگزوز توربین به بیرون رانده می شود . توان گرفته شده از توربین معمولاً به محور ژنراتور و کمپرسور منتقل می گردد . حدود یک سوم این توان در ژنراتور تبدیل به انرژی الکتریکی می گردد و بقیه جهت چرخاندن محور کمپرسورغلبه بر تلافات مصرف می گردد و بهمین خاطر راندمان توربینهای گازی پایین و حدود 27 درصد است .

نیروگاه آبی :

اساس کار نیروگاه آبی آنست که از انرژی پتانسیل آب ذخیره شده در پشت سد برای چرخاندن توربین آبی و در نتیجه چرخاندن ژنراتور استفاده می شود و برق تولید می گردد . احداث این نیروگاهها بستگی به شرایط جغرافیایی و مکانی و وجود آب رودخانه دارد در کشورهایی که منابع آبی فراوان دارند احداث نیروگاه آبی بسیار مفید است چرا که برق تولیدی آنها بسیار ارزانتر است و راندمان این نیروگاهها بسیار بالا ست ( 80 تا 90 درصد ) و راه اندازی آن ساده است و در زمان کوتاهی می تواند وارد شبکه شود . همچنین از دیگر مزایای نیروگاههای آبی کنترل آبهای سطحی در پشت سد و استفاده در بخش کشاورزی است .

نیروگاه بخار:

اساس کار نیروگاه های بخاری بدین منوال است که بخار تولید شده در دیگ بخار به توربین هدایت پس از به دوران در آوردن محور توربین به کندانسور رفته و توسط آب خنک کن تقطیر و بصورت آب در می آید . در ژنراتور با گردش روتور آن که سه محور توربین به آن متصل است الکتریسته تولید می گردد . نیروگاههای بخار برای بارهای اصلی یا پایه ساخته می شوند و عمر آنها نسبت به نیروگاههای گازی بیشتر است از محاسن دیگر این نیروگاهها بالا بودن راندمان ( حدود 45% ) نسبت به نیروگاه های گازی می باشد .

نیروگاه ترکیبی ( مختلط ) :

در اینگونه نیروگاهها با استفاده از حرارت خروجی از اگزوز توربین گاز آب را در دیگ بخاری که معمولاً Heatrecovery boiler نامیده می شود گرم کرده و بصورت بخار در می آید . سپس این بخار، توربین بخار را به حرکت در می آورد .

با این روش چون از حرارت گازهای اگزوز توربین گاز استفاده شده دیگ بخار گرم می شود و راندمان کل نیروگاه بالاتر از نیروگاه بخاری گردیده و به 48 درصد هم می رسد .

مشخصات نیروگاه سیکل ترکیبی شهید رجایی :

موقعیت جغرافیایی : نیروگاه سیکل ترکیبی شهید رجایی در قسمت جنوبی نیروگاه بخار شهید رجایی در 25 کیلومتری اتوبان قزوین – تهران قرار دارد .

شرایط محیطی:

رطوبت نسبی 46%

متوسط حداکثر دمای محیط 41 درجه

متوسط حداقل دمای محیط 14- درجه

متوسط درجه حرارت محیط 5/14 درجه

این نیروگاه شامل 6 واحد توربین گازی هر کدام به ظرفیت MW 123 و به همراه 3 واحد حرارتی بخار به قدرت MW 6/100 به صورت سیکل ترکیبی در می آید .

توربین های گازی ساخت شرکت جنرال موتور آمریکا و توربین های بخار ساخت شرکت زیمنس آلمان می باشد .

تلاش برای یافتن بازده بالاتر موجب ایجاد تغییراتی در نیروگاه ها و از جمله نیروگاه های بخار شده است . چرخه ی گاز – بخار یا اصطلاحاً سیکل ترکیبی یکی از این اصطلاحات می باشد . توربین ها ی گاز بدلیل داشتن دمای بالاتر 1150 درجه در مقابل توربین های بخار در حدود 600 درجه قابلیت ایجاد بازده حرارتی بیشتری دارند اما چرخه های گازی دارای یک عیب بزرگ می باشد و آن بالا بودن دمای خروجی اگزوز آنها می باشد معمولاً بالای 500 درجه که قسمت بزرگی از مزایای آن را محو می کند .

علم امروز این امکان را به وجود می آورد که از گازهای خروجی با دمای بالای اگزوز به عنوان یک منبع انرژی حرارتی برای یک سیکل بخار استفاده کنیم .

پیشرفت های اخیر در تکنولوژی چه در توربین های گاز و چه در بخار این امکان را می دهد که بازده را بدون افزایش زیادی در هزینه در سیکل های ترکیبی تا حدود 40% افزایش دهیم .

در سال 1988 شرکت زیمنس SIEMENS توانست نیروگاهی ترکیبی به ظرفیت 1350 MW و بازده 5/55% در یکی از شهرهای ترکیه احداث نماید .

در نیروگاه شهید رجایی، تعداد 6 واحد توربین گازی هر کدام به قدرت MW 123 نصب و راه اندازی گردیده است که این واحدها با نصب 3 واحد حرارتی به قدرت MW 6/100 × 3 به صورت سیکل ترکیبی در آمده است .

اولین واحد گازی این نیروگاه در تاریخ 5/5/73 و دومین واحد در تاریخ 25/5/73 و سومین واحد در تاریخ 10/6/73 ، چهارمین واحد در تاریخ 2/7/1373 و پنجمین واحد در تاریخ 30/8/1373 و آخرین واحد ( ششم ) در تاریخ 3/4/1374 وارد شبکه سراسری گردید .

- نکته مهم : سطح آب در درام

زمانی که فشار در درون درام افت پیدا می کند ، از آنجا که با افت فشار تعداد بیشتری از ملکولهای بخار ایجاد می شوند ( زیرا فشار از سطح مایع برداشته شده ) و همواره بین آب ورودی وبه درام و بخار خروجی از آن تناسب وجود دارد و سطح آب در درام کاهش می یابد که این عمل موجب سوختن لوله های Evaprator می شود. ضمناً اگر فشار افزایش یابد میزان بخار خروجی کاهش یافته و سطح آب در درام افزایش می یابد . و ممکن است این آب وارد لوله های سوپر هیت شود . به این منظور و برای جلوگیری از نوسانات سطح آب در درام از یک سری ارتفاع سنج هایی استفاده می شود که سطح آب در درام را کنترل می کنند .

در ضمن در هر یک از درام های HP و IP یکسری شیرهایی جهت نمونه گیری و تغذیه شیمیایی موجود می باشد، که مواد ضد خوردگی از آن طریق به داخل درام تزریق می شوند .

نکته قابل توجه آنست که خطی از HP Drum به IP Drum متصل می باشد. که این خط لوله جهت تغذیه انرژی می باشد که آب با فشار و درجه حرارت بالا را از HP وارد IP نموده تا در IP استفاده شده و ودما و فشار آن گرفته شود.

این مسئله باعث افزایش راندمان و استفاده بهینه از آب موجود در سیستم می شود این آب در پایان از IP Drum به سمت Drain blow down می گردد .



5- Down Commer and evaprator :

آب از طریق یک سری لوله به نام Down Commer از درام به سمت پایین ترین نقطه Boiler می آید که از آنجا از طریق Header هایی به لوله هایی به نام Evaprator منشعب می شود.

وظیف? Evaprator آن است که آب را تبخیر نموده ( در اصل آب آمده از Drum را به حالت دو فازی تغییر دهد) تا در درام آب دو فاز داشته باشیم .

چون Evaprator در ابتدای مسیر ورود گازهای داغ توربین گاز قرار دارد، گرمای بیشتری جذب نموده و آب را تبخیر می نماید . تعداد لوله های Evaprator که موارزی هستند در قسمت درام HP 7 سری است . که در دو قسمت چهار سری و سه سری از Down Commer منشعب می شود . اما در درام IP تعداد لوله های Evaprator که از Down Commer منشعب می شوند 4 سری لوله موازی است که در یک سمت Down Commer قرار دارد .

سومین Evaprator ، LP evaporator است که در زیر Deavrator , Storage tank قرار دارد و آب را از Down Commer گرفته و در ودو سری لوله موازی گرم می نماید و سپس وارد Storage tank می کند.

نکته 1: در لوله های Evaprator آب خود به خود بالا می رود و احتیاجی به پمپ نیست . علت این امر ، اختلاف دانسیته است مجموع لوله های Evaprator و Down Commer مانند یک لوله V شکل هستند که به صورت متصل به هم در نظر گرفته می شود . یک طرف لوله آب اشباع و طرف دیگر لوله آب و بخا ر داریم و چون دانسیته بخار از آب کمتر است پس دانسیته کل سیال Evaporation از دانسیته کل لوله ها Down Commer کمتر است . و این اختلاف دانسیـه باعث حرکت آب از دانسیت? بالا به دانسیت? پایین و سیر کولاسیون طبیعی آب می شود ، که این در سیکل ترکیبی نیروگاه شهید رجایی اتفاق می افتد( سیر کولاسیون- طبیعی)

نکته 2:

بویلر هایی که در فشار بحرانی کار می کنند ، احتیاج به پمپ دارند ( مانند نیروگاه نکا ) زیرا با افزایش فشار ، اختلاف دانسیته بین آب اشباع و بخار اشباع کمتر می شود تا اینکه در فشار بحرانی دیگر بین این دو اختلافی نیست ( نمودار P-V در فشار بحرانی ، حجم که عامل تغییر چگالی است بین آب اشباع و بخار اشباع ثابت است ) و آب اشباع مستقیماً به بخار سوپر هیت تبدیل می شندو دیگر نا حیه دو فازی را طی نمی کند . پس باید یک پمپ در مسیر راه لوله های Down Commer قرار گیرد.

این پمپ همان B.C.P است که هر کدام برای چرخش آب در بویلر به کار می رود ، زیرا اختلاف دانسیته قادر به تأمین این هدف نیست . در چنین نیروگاه هایی که دیگر Drum موجود نیست و آب درون Water wall های محفظه احتراق مستقیماً به بخار سوپر هیت تبدیل می شود.







6- Super Header :

برای استفاده از انرژی و حرارت گاز عبوری از بویلر و همچنین تولید بخار با کیفیت برای توربین ها در نیروگاه ، بخار اشباع تولید شده در درام را مجدداً توسط گازهای حاصل از احتراق در بخش توربین گاز گرم می کنند . این عمل به دلیل استفاده هر چه بیشتر از انرژی گاز صورت می گیرد.

که به این عمل داغ کردن بخار یا Super heater گفته می شود.

یک سوپر هیت شامل هدرهای ورودی و خروجی می باشد که توسط لوله هایی با قطر کم به هم مرتبط می شوند . سوپر هیتر ها معمولاً چند مرحله ای هستند به این ترتیب کنترل درجه حرارت نیز ساده می شود .

سوپر هیترها بر اساس شرایط طراحی بخار دریافتی طبقه بندی می شود . روش دیگر طراحی بر اساس تعداد لوله ها و محل هدرها می باشد .

تقسیم بندی از نظر شکل قرار گرفتن لوله ها و هدر ها به صورت زیر است:

- آویزان : که لوله ها از هدرها آویزان بوده و توسط آنها نگهداری می شوند.

2- افقی : که لوله ها به صورت افقی قرار دارند.

3- L شکل : که از حداکثر برخورد دود با لوله استفاده می شود.

همانطور که می دانیم بخار خروجی از درام بخار آب اشباع می باشد و به محض برخورد با هر جسم سردی به مایع تبدیل می شود به همین خاطر آن را در سوپر هیتر به صورت بخار مافوق گرم می آورند.

که این کار در نیروگاه سیکل ترکیبی در یک سوپر هیتر IP و در سوپر هیتر HP انجام می شود.

در سوپر هیتر IP بخار مربوط پس از خروج از Drum در داخل سوپر هیتر خشک شده و در نمودار T.S ترمودینامیک وارد منطقه مافوق گرم می شود و مهیای ورود به توربین می گردد.

که در مسیر آن دو Safty valve وجود دارد که در صورتی که فشار از bar 7/7 بیشتر باشد عمل خواهد نمود .

اما در سوپر هیتر HP که شامل دو سوپر هیتر Primary و Final می باشد . بخار پس از خروج Drum HP در سوپر هیتر اولیه خشک شده تا قطرات آب وارد توربین نگردد و باعث ایجاد خوردگی و ارتعاش پرده های توربین نشود به این منظور بخار خروجی از سوپر هیتر اولیه مهیای ورود به سوپر هیتر ثانویه می شود.

علت این امر این است که بخار ورودی به توربین HP می بایست درجه حرارت معینی داشته باشد لذا در مسیر بین دو سوپر هیتر اولیه و ثانویه آبپاشی قرار دارد که بر روی بخار، آب می پاشد و درجه حرارت را به میزان مورد نیاز برای HP توربین می رساند سپس بخار وارد سوپر هیتر ثانویه شده تا قطرات آب پاشیده شده بر روی آن مجدداً بخار شود . تا قطرات ریز آب وارد توربین نگردد .

در مسیر بخار سوپر هیت به HP توربین دو عدد Safefy valve است که طریق? عملکرد آن مانند Safefyvalve های مسیر IP بخار است .

بخار خروجی از سوپر هیتر ثانویه دارای دبی Kg/h 144280 و فشار bar 54/89 و دمای 512 می باشد .

با توجه به مطالب گذشته بویلر فرایند فشار ثابت را در دیاگرام T-S طی میکند اما در عمل در حدود 19 الی 20 بار اختلاف فشار وجود دارد که به دلیل وجود افت فشار در لوله های موجود در مسیر می باشد .