فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

گزارش کاراموزی موتورها و فنرها

گزارش کاراموزی موتورها و فنرها در 11 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 1
فرمت فایل doc
حجم فایل 149 کیلو بایت
تعداد صفحات فایل 11
گزارش کاراموزی موتورها و فنرها

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کاراموزی موتورها و فنرها در 11 صفحه ورد قابل ویرایش


مقدمه :

در حقیقت تمامی موتورهای جتی که دارای توربین هستند توربین گاز (ولی اصطلاح توربین گاز بیشتر به موتورهای جتی داده میشود که هدف استفاده از آنها تولید رانش نیست بلکه چرخاندن توربین و اکثرا برای تولید برق است و برخی اوقات در طراحی و نحوه قرار گرفتن توربین ها و نازل با انواع دیگر موتور جت تفاوت عمده ای دارند . در توربین های بخار برای چرخاندن توربینها ابتدا آب را توسط سوختهای فسیلی حرارت میدهند تا آب تبدیل به بخار شود و بخار سبب چرخش توربین میشود که این سیستم دارای ضعفهایی است از جمله حجیم بودن دستگاهها و تشکیلات نیروگاه ولی در توربین گاز مرحله تبدیل آب به بخار حذف شده است و گاز های داغ خروجی که در توربین بخار هدر میشوند در این حالت مستقیما سبب چرخش توربین میگردد .

توربین گازی که در پایین مشاهده میکنید دارای کمپرسور شعاعی (گریز از مرکز) و توربین محوری میباشد



سیستم تعلیق چیست؟

امروزه راحتی سرنشینان مهم ترین هدف

سازندگان خودرو است.یکی از مهم ترین عوامل راحتیسرنشینان جلوگیری از انتقال ارتعاشات حاصل از محیط خارج به سرنشینان است. این ارتعاشات میتواند ناشی از عوامل متعددی مانند ترمز کردن ،حرکت در پیچ و ناهمواریهای جاده و .... باشد. برای تحقق این هدف ،بین چارچوب شاسی و چرخهای خودرو سیستم تعلیق را کار گذاشته اند.

سیستم تعلیق ،مجموعه فنرها،کمک فنرها و تمام سازوکارهایی است که برای ایجاد راحتی سفر و فرمانپذیری خودرو به کار میروند.

هر سیستم تعلیق دو هدف کلی دارد:

?-راحتی سرنشینان

?-فرمایپذیری و کنترل خودرو

هدف اول به واسطه جدا کردن سرنشینان از ناهمواریهای جاده فراهم میشود. که این وظیفه به وسیله اجزای انعطاف پذیر مانند فنر و عضو میرا کننده (کمک فنر)انجام میپذیرد.در واقع اکثر کار سیستم را فنرها انجام میدهند،از کمک فنرها نیز همان طور که اشاره شد برای میرا کردن نوسان فنرها بعد از برخورد با ناهمواریها در جاده استفاده میشود.به طوری که اگر کمک فنر استفاده نشود ،اتومبیل بعد از برخورد با ناهمواریها به دفعات و با دامنه نسبتا زیاد نوسان میکند و این برای سرنشینان ناخوشایند است.

هدف دوم نیز به وسیله جلوگیری از غلط خوردن و پرتاب شدن خودرو و حفظ تماس چرخها با جاده میسر میشود.این وظیفه با استفاده از بازوهای مکانیکی که اتصال اکسل یا چرخها به بدنه یا شاسی را ممکن میسازد،انجام میشود.

خواص یک سیستم تعلیق که برای دینامیک خودرو اهمیت زیاد دارد در رفتار حرکتی و پاسخ ان به نیروها و ممنتوم های است که از تایرها به شاسی انتقال میابد.

در واقع سیستم تعلیق یکی از اجزای واحد شاسی در هر خودرو سبک و سنگین است که در ناحیه ای بین محور عرضی انتقال قدرت چرخها و قسمت بدنه خودرو قرار میگیرد.

سرعت جهش فنر(spring rate):



که به ان deflection rate هم گفته میشود و معیاری برای اندازه گیری سختی فنر است.سرعت جهش فنر مقدار نیرویی است که باید وارد شود تا فنر ? اینچ تغییر شکل دهد(منبسط یا متراکم شود)،به فرض اگر برای فشرده شدن فنر به اندازه ? اینچ،??? پوند نیرو لازم باشد میتوان نتیجه گرفت که برای متراکم شدن ان به اندازه ? اینچ باید??? پوند نیرو اعمال کرد.

spring rate به عوامل زیر بستگی دارد:

تعداد حلقه های فنر،قطر حلقه ها،قطر سیمی که فنر از ان ساخته شده است.

به طوری که سختی فنر با قطر سیم نسبت مستقیم و با تعداد حلقه ها نسبت عکس دارد.

همچنین میتوان این نوع فنرها را طوری ساخت که سختی متغیر داشته باشند،این سختی متغیر عمدتا از طریق تغییر در پارامترهایی همچون،ضخامت در طول سیم،فواصل بین حلقه ها،و قطر حلقه ها ایجاد میشود.این نوع فنرها در شرایط بدون بار یا کم بار سختی کمتری از خود نشان میدهند و در نتیجه حرکت نرم و هموار را برای اتومبیل ایجاد میکنند.اما تحت شرایط بارگذاری شده سختی انها بیشتر است که نتیجه ان توانایی در تحمل بار و کنترل خودرو در شرایط متغیر جاده است.


گزارش کاراموزی موتورهای دیزل و پمپ های هیدرولیک

گزارش کاراموزی موتورهای دیزل و پمپ های هیدرولیک در 76 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
بازدید ها 11
فرمت فایل doc
حجم فایل 336 کیلو بایت
تعداد صفحات فایل 76
گزارش کاراموزی موتورهای دیزل و پمپ های هیدرولیک

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کاراموزی موتورهای دیزل و پمپ های هیدرولیک در 76 صفحه ورد قابل ویرایش


فهرست مطالب

عنوان صفحه

فصل اول : معرفی موتور دیزل



موتور دیزل 1

ریشه لغوی 1

دید کلی 1

تاریخچه 2

تقسیمات 3

ساختمان 4

طرزکار 4

سیکل موتورهای دیزل چهارزمانه 9

زمان تنفس : 9

زمان تراکم : 10

زمان قدرت : 10

زمان تخلیه : 11

سیکل موتور دوزمانه دیزل 11

موتورهای دیزل دو زمانه چگونه کار می کند؟ 11

نحوه ی کار چرخه 12

موتورهایGeneral Motors EMD 15

مزایای موتورهای دیزل 23

کارآیی بهتر از نظر مصرف سوخت : 23

توان بیشتر : 23

دوام بیشتر : 24

کاهش انتشار آلاینده ها : 25

معرفی موتورهای گاز سوز 25

1- انواع موتورهای احتراق داخلی سیلندر پیستونی 25

2- موتورهای گازی 29

3- کاربردها 32

4- مشخصه های طراحی 33

گاز طبیعی و موتورهای دیزل 35

• طرح ساختاری مبدل های کاتالیستی 37

• مواد افزودنی سوخت 39

فصل دوم : تعمیر و نگهداری

تعمیر و نگهداری 42

نگهداری و تعمیرات پیشگویانه ( Predictive Maintenance ) 42

فعالیتهای نت پیشگویانه (PdM) : 42

مزایای آشکار و پنهان در اجرای نت پیشگویانه 45

رمز موفقیت در برنامه های نت پیشگویانه (PdM) 46

چگونگی تعیین تناوب انجام بازرسی ها 47

نگهداری و تعمیرات واکنشی ( Reactive Maintenance ) 49

آنالیز روغن 50

مقدمه : 50

دسته بندی آزمایشها و نتایج : 52

نگاهی به مبحث آنالیز روغن ( Oil Analysis ) 54

آنالیز روغن چیست ؟ 55

آنالیز عناصر فرسایشی 56

افزودنی های روغن 58

ویسکوزیته Viscosity 58

دوده سوخت 59

رقیق شدن روغن در اثر اختلاط با سوخت 60

آلودگی با آب یا ضدیخ 60

اکسیداسیون 61

نیتراسیون 62

نمونه گیری از روغن 63

نه گام جهت اجرای موفق آنالیز روغن 64

فصل سوم : پمپ های هیدرولیک

پمپ های هیدرولیکی 68

پمپ ها با جابه جایی مثبت از نظر ساختمان : 70

پمپ های دنده ای Gear Pump 71

3- پمپ های گوشواره ای Lobe Pumps 73

4- پمپ های پیچی Screw Pumps 74

5- پمپ های ژیروتور Gerotor Pumps 75

پمپ های پره ای : 75

پمپ های پیستونی 77

پمپ های پیستونی شعاعی (Radial piston pumps) 80

پمپ های پلانچر (Plunger pumps) 81

راندمان پمپ ها (Pump performance): 82







موتور دیزل

ریشه لغوی

کلمه دیزل نام یک مخترع آلمانی به نام دکتر رودلف دیزل است که در سال 1892 نوع خاصی از موتورهای احتراق داخلی را به ثبت رساند، به احترام این مخترع اینگونه موتورها را موتورهای دیزل می‌نامند.

دید کلی

موتورهای دیزل ، به انوع گسترده‌ای از موتورها گفته می‌شود که بدون نیاز به یک جرقه الکتریکی می‌توانند ماده سوختنی را شعله‌ور سازند. در این موتورها برای شعله‌ور ساختن سوخت از حرارت‌های بالا استفاده می‌شود. به این شکل که ابتدا دمای اتاقک احتراق را بسیار بالا می‌برند و پس از اینکه دما به اندازه کافی بالا رفت ماده سوختنی را با هوا مخلوط می‌کنند.

همانگونه که می‌دانید برای سوزاندن یک ماده سوختی به دو عامل حرارت و اکسیژن نیاز است. اکسیژن از طریق مجاری ورودی موتور وارد محفظه سیلندر می‌شود و سپس بوسیله پیستون فشرده می‌گردد. این فشردگی آنچنان زیاد است که باعث ایجاد حرارت بسیار بالا می‌گردد. سپس عامل سوم یعنی ماده سوختنی به گرما و اکسیژن افزوده می‌شود که در نتیجه آن سوخت شعله‌ور می‌شود.

تاریخچه

در سال 1890 میلادی آکروید استوارت حق امتیاز ساخت موتوری را دریافت کرد که در آن هوای خالص در سیلندر موتور متراکم می‌گردید و سپس (به منظور جلوگیری از اشتعال پیش‌رس) سوخت به داخل هوای متراکم شده تزریق می‌شد، این موتورهای با فشار پایین بودند. و برای مشتعل ساختن سوخت تزریق شده از یک لامپ الکتریکی و یا روشهای دیگر در خارج از سیلندر استفاده می‌شد.

در سال 1892 دکتر رودلف دیزل آلمانی حق امتیاز موتور طراحی شده‌ای را به ثبت رساند که در آن اشتعال ماده سوختنی ، بلافاصله بعد از تزریق سوخت به داخل سیلندر انجام می‌گرفت. این اشتعال عامل حرارت زیادی بود که در اثر تراکم زیاد هوا بوجود می‌آمد. وی ابتدا دوست داشت که موتور وی پودر زغال سنگ را بسوزاند ولی به سرعت به نفت روی آورد و نتایج قابل توجهی گرفت.

طی سالهای متمادی پس از اختراع موتور دیزل ، از این نوع موتور عمدتا و منحصرا در کارهای درجا و سنگین از قبیل تولید برق ، تلمبه کردن آب ، راندن قایق‌های مسافری و باری و همچنین برای تولید قدرت جهت رفع بعضی از نیازهای کارخانجات استفاده می‌شد. این موتورها سنگین ، کم سرعت ، دارای یک یا چند سیلندر و از نوع دوزمانه یا چهارزمانه بودند.

پیشرفت بیشتر موتورهای دیزل ، تا توسعه سیستم‌های پیشرفته تزریق سوخت در دهه 1930 طول کشید. در این سالها رابرت بوش تولید انبوه پمپ‌های سوخت‌پاش خود را آغاز کرد. توسعه پمپ‌‌های سوخت‌پاش (پمپ‌های انرژکتور) با توسعه موتورهای کوچکی که برای استفاده در موتورها مناسب بودند متعادل شد.

موتورهای دیزل سبکتری که سرعتشان نیز بالا بود در سال 1925 به بازار عرضه شدند. با آنکه پیشرفت در ساخت این موتورها کند بود. اما در سال 1930 موتورهای دیزل قابل اطمینان که به خوبی طراحی شده‌بودند و چند سیلندر و سریع نیز بودند به بازار عرضه شد. این پیشرفت تا پایان جنگ جهانی دوم برای مدتی کند بود. لیکن از آن تاریخ تا کنون طراحی و تولید این موتورها به طریقی پیشرفت نموده است که امروزه استفاده گسترده و فراگیر از موتورهای دیزل را شاهد هستیم.

تقسیمات

موتورهای دیزل نیز مانند سایر موتورهای احتراق داخلی بر مبناهای مختلفی قابل طبقه‌بندی هستند. مثلا می‌توان موتورهای دیزل را بر حسب مقدار دفعات احتراق در هر دور گردش میل لنگ به موتورهای دیزل دوزمانه و یا موتورهای دیزل چهارزمانه تقسیم‌بندی نموده و یا بر حسب قدرت تولیدی که به شکل اسب بخار بیان می‌گردد. یا بر حسب تعداد سیلندر و یا شکل قرارگیری سیلندرها که بر این اساس به دو نوع موتورهای خطی و موتورهای V یا خورجینی تقسیم بندی می‌کردند و ...

ساختمان

ساختار موتورهای دیزل نه تنها در سیستم تغذیه و تنظیم سوخت با موتورهای اشتعال جرقه‌ای تفاوت می‌کند. بنابراین ساختارهای بسیار مشابهی میان این موتورها وجود دارد و تنها تفاوت ساختمانی آنها قطعات زیر است که در موتورهای دیزل وجود دارد و در سایر موتورهای احتراق داخلی وجود ندارد.

_پمپ انژکتور :__ وظیفه تنظیم میزان سوخت و تامین فشار لازم جهت پاشش سوخت را به عهده دارد.

انژکتورها : باعث پودر شدن سوخت و گازبندی اتاقک احتراق می‌شوند.

فیلترهای سوخت : باعث جداسازی مواد اضافی و خارجی از سوخت می‌شوند.

لوله‌های انتقال سوخت : می‌بایست غیرقابل اشباع بوده و در برابر فشار پایداری نمایند.

توربوشارژر : باعث افزایش هوای ورودی به سیلندر می‌شوند.

طرزکار

همانگونه که اشاره شد موتورهای دیزل بر اساس نحوه کارکردن به دو دسته موتورهای 4 زمانه و 2 زمانه تقسیم می‌شوند. لیکن در هر دوی این موتورها چهار عمل اصلی انجام می‌گردد که عبارتند از مکش یا تنفس - تراکم - انفجار و تخلیه اما بر حسب نوع موتورها ممکن است این مراحل مجزا و یا بصورت توام انجام گیرند.

موتورهای دیزلی

موتورهای دیزلی نسبت به موتورهای بنزینی ارزانتر و مقرون به صرفه تر هستند. موتور دیزلی فقط هوا را دریافت داشته، آنرا فشرده کرده و بعد سوخت را درون هوای فشرده تزریق می نماید. گرمای هوای فشرده فورآً سوخت را روشن می سازد. موتور بنزینی در نسبت 8:1 تا 12:1 فشرده شده در حالیکه موتور دیزلی در نسبت 14:1 تا حداکثر 25:1 فشرده می گردد. نسبت بالای فشردگی موتور دیزلی سبب کارآیی بهتر آن می شود. موتور دیزلی فقط از تزریق سوخت مستقیم استفاده می نماید. سوخت دیزلی مستقیماً وارد سیلندر می گردد. موتور دیزلی شمع نداشته فقط گرمای هوای فشرده است که سوخت را در آن روشن می سازد. یکی از تفاوتهای بزرگ موتور بنزینی و دیزلی تزریق سوخت آن می باشد. بیشتر موتورهای ماشین از سوپاپ تزریق یا کاربراتور استفاده می کنند. بنابراین تمام سوخت در سیلندر بارگذاری شده سپس فشرده می گردد. فشردگی ترکیب سوخت / هوا نسبت فشردگی موتور را محدود می سازد. اگر فشردگی هوا خیلی زیاد باشد ترکیب سوخت / هوا فوراً مشتعل گشته و صدای تق تق را بوجود می آورد. دیزل فقط هوا را فشرده ساخته طوریکه نسبت فشردگی می تواند زیاد شود. نسبت فشردگی زیاد، نیروی زیادی را ایجاد خواهد نمود. سوخت دیزلی سنگینتر بوده بتدریج تبخیر می گردد، نقطه جوش آن بیشتر از نقطه جوش آب است، دارای اتمهای کربن زیادی است ....


د) موتورهای دو گانه سوز ایستگاهی

(Dual fuel engines) : در حقیقیت همان موتورهای دیزل با توان خروجی بالا تا حدود 6000 کیلوات می باشند. سوخت اصلی گاز طبیعی بوده که نه بوسیله جرقه بلکه با پاشش گازوئیل در انتهای مرحله تراکم، مشتعل می شود. به عنوان نمونه، حدود90% انرژی سوختی از طریق گاز طبیعی و حدود10% بوسیله گازوئیل تامین میشود. همچنین قابلیت کارکرد با گازوئیل به تنهایی یا سوخت دوگانه مذکور را دارد، اما هزینه نگهداری آنها بالا میباشد.

2- موتورهای گازی

موتورهای گاز سوز با سوخت گاز طبیعی جهت احتراق مخلوط سوخت و هوا در داخل سیلندر، همانند موتورهای بنزینی از سیستم جرقه که از طریق شمع بوسیله ایجاد یک جرقه قوی در فاصله زمانی معین می باشد، عمل میکنند. انواع سوختهای گازی و مایعی فرار در محدوده لندفیل تا پروپان و تا بنزین می باشند که در یک سیستم صحیح سوخت رسانی و با نسبت تراکم مناسب، کار کنند.

موتورهای گاز طبیعی سوز که برای تولید الکتریسیته طراحی و ساخته میشوند به موتورهای ایستگاهی معروفند که 4 زمانه هستند و تا 5 مگاوات در دسترس می باشند.

بر اساس توان خروجی، احتراق موتورها بر 2 روش و تکنیک به شرح زیر استوار است:

· محفظه باز : در این سیستم نوک شمع درست در محل محفظه احتراق قرار دارد و مستقیما مخلوط فشرده سوخت و هوا را مشتعل میکند. این روش بیشتر برای موتورهایی استفاده میشود که احتراق در آنها در محدوده نقطه استوکیومتری تا مخلوط رقیق هوا / سوخت قرار دارد.

· محفظه پیش احتراق : در اصل یک فرایند احتراق مرحله ای پیش می آید که در آن شمع در بالای سرسیلندر نصب میشود. در این موتورها مخلوط غنی سوخت و هوا که رابطه مستقیم با سرعت انتقال شعله به محفظه احتراق اصلی را دارد، وارد سرسیلندر میگردد. این تکنیک جهت شعله ور کردن مطلوب مخلوط هوا با سوختهای سبک و رقیق در موتورهای که قطر سیلندر بزرگی دارند بکار گرفته میشوند.

ساده ترین موتورهای گازی بر اساس تنفس طبیعی هوا و سوخت از طریق کاربراتور و یا میکسر به داخل سرسیلندر کار میکنند. موتورهای پیشرفته از نظر عملکرد مجهز به توربوشارژ برای ورود مقدار هوای بیشتر به سرسیلندر می باشند. همانند بنزینی ها نسبت تراکم موتورهای گاز طبیعی سوز نسبت به دیزل ها کم و در حدود 9:1 تا 12:1 می باشد که این محدوده خود تابع شرایطی چون ابعاد و تجهیزات جانبی چون توربوشارژ است. این نسبت تراکم خود دلیلی بر راندمان پایینتر گازسوز نسبت به دیزل است.

یکی از دلایل نسبت احتراق پایین جلوگیری از اشتعال خود بخود و پدیده ضربه می باشد که میتواند صدماتی به بدنه بلوک موتور وارد آورد.

استفاده از تکنولوژی جرقه قدرتمند و مخلوط رقیق سوخت و هوا در موتورهای گاز طبیعی سوز عاملیست در کاهش دمای بالای اشتعال در سرسیلندر و نیز کاهش ذرات آلاینده همچون Nox .

3- کاربردها

امروزه موتورهای پیستونی تجهیزات مناسبی جهت تولید توان الکتریکی پراکنده در مراکز صنعتی، تجاری و کاربریهای آموزشی در کشورهای اروپایی و آمریکا می باشند. موتورهای پیستونی سریع روشن می شوند، سریع باردهی میگردند و در کنار قابلیت اعتماد بالا راندمان خروجی خوبی دارند. در بیشتر شرایط و موقعیتها، مجموعه ای از موتورها در کنار هم باردهی و قابلیت دسترسی را بالا میبرند. موتورهای احتراق داخلی نسبت به توربینهای گازی در ابعاد برابر از نقطه نظر توان خروجی، راندمان الکتریکی بالاتری دارند و بنابراین مصرف سوخت کمتر و عملکرد مناسبتری دارند. همچنین در محدوده توان 3 مگاوات الی 5 مگاوات، هزینه اولیه موتورهای پیستونی از توربینهای گازی کمتر است. در مورد تعمیر و نگهداری، توربینهای گازی نسبت به موتورهای رفت و برگشتی، هزینه کمتری دارند. اما توجه به این نکته لازم و ضروری است که همواره متخصصان بومی در هر مکانی جهت تعمیرات و نگهداری انواع موتور های رفت و برگشتی حضور دارند.

پتانسیلهای استفاده از موتور های پیستونی در تولید انرژی الکتریکی پراکنده و غیر متمرکز به جهت دوری از تلفات افت انتقال و توزیع که در شبکه سراسری برق کشور وجود دارد شامل موارد اضطراری، پیک زایی، پشتیبانی از شبکه برق سراسری و کاربرد در تکنولوژی سیستمهای تولید همزمان برق و حرارت جهت تولید آب گرم، بخار کم فشار برای کاربرد در گرمایش زمستانی و سرمایش تابستانی در سیستمهای چیلرهای جذبی میباشد. این موتورها امکان استفاده به عنوان نیروی محرک انواع پمپهای آب، انواع کمپرسورهای هوا و گاز مبرد سیستمهای تهویه مطبوع و سردخانه را دارا می باشند.

4- مشخصه های طراحی

مجموعه عواملی که موتورهای گازسوز را در صدر جدول محرکها اولیه جهت تولید الکتریسیته به شکل پراکنده و غیرمتمرکز قرار میدهد به شرح زیر است:

ü محدوده توان الکتریکی : 10 -5 مگاوات در دسترس میباشد.

ü انرژی حرارتی خروجی ( تلفات قابل استحصال ) : آب داغ و بخار کم فشار.

ü استارت سریع : قابلیت استارت سریع موتورهای رفت و برگشتی در شرایط اضطراری و پیک.

ü قابلیتهای نحوه استارت : موتورها جهت استارت تنها به یک باتری نیازمندند.

ü عملکرد در بار جزیی : راندمان بالا و اقتصادی در بارهای جزیی.

ü قابلیت اعتماد و عمر : اثبات شده است که موتورها از نظر تعمیر و نگهداری در رده مطلوبی قرار دارند.

ü نشر آلاینده ها : موتورهای گازسوز، یعنی انرژی سبز.





گاز طبیعی و موتورهای دیزل

کاربرد گازطبیعی در موتورهای دیزل دارای ابعاد مکانیکی است، با این حال، کارکردن بر روی آلاینده های سیستم گازطبیعی در حیطه تخصص مهندسی شیمی قرار می گیرد.مقاله زیر خلاصه ی رساله دکترای ناصر سلامی است که در یک پروژه بین المللی با مشارکت دانشگاه صنعتی شریف، دانشگاه کالگری کانادا، دانشگاه آلبرتای کانادا و چند شرکت صنعتی دیگر کانادایی نگاشته شده است. در این مقاله به فعالیت های علمی در زمینه مبدل های کاتالیستی سیستم گازطبیعی و همچنین مواد افزودنی سوخت توسط مؤلف انجام گردیده، اشاره شده است

در تیم تحقیقاتی این پروژه، گروهی مسئولیت موتور و سیستم گازسوز و گروهی دیگر مسئولیت مطالعه و فعالیت روی مبدل کاتالیستی را برعهده داشتند. مبدل کاتالیستی برای بیش از سه دهه در دنیا روی خودروهای بنزینی مورد استفاده قرار گرفته است. به خصوص تجربه های زیادی در این مقوله برای خودروهای بنزینی وجود دارد. گرچه مرزهای دانش دائما در حال توسعه است و تجربه های جدیدی در زمینه های گوناگون مرتبط با مبدل های کاتالیستی طرح می شود و به کار می روند، ولی مبدل کاتالیستی سیستم گازطبیعی دارای ساختار ویژه ای می باشد. در خروجی موتورهای گازسوز، اعم از سیستم سوخت دو گانه ای (Dual Fuel) و سیستم اختصاصی (Dedicated)، متان به عنوان عمده ترین هیدروکربن نسوخته خروجی وجود دارد. در خانواده هیدروکربن ها، مقاوم ترین هیدروکربن در مقابل اکسیداسیون متان است اگر چه در حال حاضر، در برخی از استانداردهای زیست محیطی، متان به عنوان عامل آلاینده محسوب نمی شود،این دیدگاه همه گیر نیست و مطالعاتی روی تبدیل بهینه متان در خروجی موتورها انجام می گیرد. ما اولین گروهی بودیم که در این زمینه در مقوله سوخت دوگانه کار کردیم و بخشی از فناوری هایی را که پیش از این در صنایع شیمیایی مورد استفاده قرار گرفته بود، برای اولین بار در این زمینه مورد ارزیابی قرار دادیم. از جمله بهره گیری از ایجاد شرایط گذرای برنامه ریزی شده برای افزایش عملکرد رآکتورها در برخی از موارد به اثبات رسیده است.

مشکل اساسی در سیستم سوخت دوگانه این است که دمای خروجی موتور برای تبدیل متان در اغلب مبدل های کاتالیستی کافی نیست. شاید از منظر تئوری و با آزمایش روی متان خالص در آزمایشگاه این تبدیل دشوار نباشد، ولی ماهیت خروجی موتور سوخت دوگانه با حضور سایر ترکیبات پیچیده ناشی از احتراق از جمله انواع رادیکال های آزاد و مولکول های گوناگون، مانع تبدیل مناسب متان می شود. از طرفی معمولا عمر مبدل های کاتالیستی که در این زمینه مورد استفاده قرار می گیرند، چندان طولانی نیست. طی آزمایش های متعدد روی این سیستم تلاش کردیم تا به کمک ایجاد شرایط ناپایدار، دمای خروجی موتور سوخت دوگانه را به صورت کنترل شده و بدون تغییر در موتور، در ساختار مبدل کاتالیستی افزایش دهیم. این تجربه جدید بعدها به صورت پتنت در آمد.باتوجه با دانسیته پایین گازطبیعی، حتی در فشارهای بالا، نیاز به حجم ذخیره سازی بیشتری وجود دارد. به عنوان مثال، ارزش حرارتی حجمی گازوئیل پنج برابر بیش از گازطبیعی در فشار 200 بار است. به همین دلیل، حجم مورد نیاز برای موتور گازسوز برای مسافت معادل پیمایش حدود پنج برابر خواهد بود.در حال حاضر شرکت های متعددی در این زمینه در ایران و جهان مشغول فعالیت هستند.


گزارش کاراموزی احتراق در موتورهای اشتعال

گزارش کاراموزی احتراق در موتورهای اشتعال در 43 صفحه ورد قابل ویرایش
دسته بندی مکانیک
بازدید ها 1
فرمت فایل doc
حجم فایل 25 کیلو بایت
تعداد صفحات فایل 43
گزارش کاراموزی احتراق در موتورهای اشتعال

فروشنده فایل

کد کاربری 6017
کاربر

گزارش کاراموزی احتراق در موتورهای اشتعال در 43 صفحه ورد قابل ویرایش



احتراق در موتورهای اشتعال – جرقه ای

موتورهای اشتعال ( احتراق ) جرقه ای یا اتو

اصول کارکرد

این سیستم ، یک موتور احتراقی می باشد که با استفاده از اشتعال بیرونی ، انرژی موجود در سوخت ( بنزین ) را به انرژی جنبشی ( سینتیک ) تبدیل می کند .

این نوع موتورها برای کارکرد خود از یک مخلوط سوخت – هوا ( بر پایه بنزین یا گاز ) استفاده می کنند .

هنگامی که پیستون در داخل سیلندر به سمت پایین حرکت می کند مخلوط سوخت هوا به داخل سیلندر کشیده شده و هنگامی که پیستون به سمت بالا حرکت می کند این مخلوط به صورت متراکم در می آید.

این مخلوط ، سپس در فواصل زمانی معین و توسط شمع ها ، جهت احتراق آماده می شود . گرمایی که در طی مرحله احتراق حاصل می شود باعث بالا رفتن فشار سیلندر گردیده و سپس پیستون باعث به حرکت درآمدن میل لنگ شده و در نتیجه این فعل و انفعال ، انرژی مکانیکی ( قدرت ) حاصل می گردد .

پس از هر مرحله احتراق کامل ، گازهای موجود از سیلندر خارج شده و مخلوط تازه ای از سوخت – هوا به داخل سیلندر کشیده ( وارد )می شود . در موتوراتومبیلها تبدیل گازها ( جابه جایی گازهای موجود ) بر اساس اصول چهار مرحله آغاز احتراق ( چهار حالت موتور ) و نیز حرکت میل لنگ که برای هر احتراق کاملی مورد نیاز می باشد ، صورت می گیرد . ( شکل 1 )




اصول کارکرد موتورهای چهار زمانه ای

موتورهای احتراقی چهار زمانه ای از سوپاپهایی جهت کنترل جریان گاز بهره می گیرند .

چهار حالت موتور عبارتند از :

1- حالت تنفس

2- حالت تراکم و جرقه

3- حالت انفجار

4- حالت تخلیه

-حالت تنفس

سوپاپ هوا ( ورودی ) : باز

سوپاپ دود ( خروجی ) : بسته

حرکت پیستون : به سمت پایین

احتراق : وجود ندارد .

حرکت رو به پایین پیستون باعث افزایش حجم مفید داخل سیلندر شده و بدین طریق مخلوط سوخت – هوای تازه از داخل سوپاپ ورودی ، وارد سیلندر می شود .





- حالت تراکم و جرقه

سوپاپ هوا( ورودی ) : بسته

سوپاپ دود ( خروجی ) : بسته

حرکت پیستون : به سمت بالا

احتراق : فاز اشتعال اولیه

هنگامی که پیستون به سمت بالا حرکت می کند باعث کاهش حجم مفید سیلندر شده و مخلوط سوخت – هوا را متراکم می کند .

درست چند لحظه قبل از رسیدن پیستون به نقطه مرگ بالا شمع بالای سیلندر جرقه زده و باعث احتراق مخلوط سوخت – هوا می شود .

نسبت تراکم توسط مقدار حجم سیلندر و حجم تراکم مطابق ذیل محاسبه می شود:

?=( V n + Vc ) Vc

نسبت تراکم در خودروهای مختلف بستگی به طراحی موتور دارد .

افزایش نسبت تراکم در موتورهای احتراق داخلی ، باعث افزایش بازده گرمایی و مصرف سوخت می گردد .

به طور مثال افزایش نسبت تراکم از 6:1 به 8:1 باعث زیاد شدن بازده گرمایی به مقدار 12 درصد می گردد .

آزادی عمل در افزایش نسبت تراکم ، توسط عامل به نام « ضربه » ( یا پیش اشتعال ) محدود می شود . « ضربه » بر اثر فشار ناخواسته و احتراق کنترل نشده به وجود می آید . این عامل باعث به وجود آمدن خساراتی به موتور می شود .

سوختهای نامناسب و نیز شکل نامناسب محفظه احتراق باعث بوجود آمدن این پدیده در نسبت تراکم های بالاتر می شود .

-مرحله قدرت

سوپاپ هوا ( ورودی ) : بسته

سوپاپ دود ( خروجی ) : بسته

حرکت پیستون : به سمت بالا

احتراق : به صورت کامل انجام گرفته است .

هنگامی که شمع ، جهت احتراق مخلوط سوخت - هوا جرقه می زند ، مخلوط گاز منفجر شده و در نتیجه دما افزایش پیدا می کند . در اثر این فعل و انفعال سطح فشار نیز در داخل سیلندر افزایش پیدا کرده و پیستون را به سمت حرکت می دهد .

نیروی حاصله از حرکت پیستون از طریق شاتون به میل لنگ و به شکل انرژی مکانیکی انتقال می یابد . این مرحله منبع اصلی قدرت موتور می باشد.

توان خروجی با افزایش سرعت موتور و گشتاور بیشتر و مطابق معادله ذیل افزایش می یابد :

P=M.?

-مرحله تخلیه

سوپاپ هوا ( ورودی ) : بسته

سوپاپ دود ( خروجی ) : باز

حرکت پیستون : به سمت بالا

احتراق : وجود ندارد .

هنگامی که پیستون به سمت بالا حرکت می کند گازهای مصرف شده ( دود ) را از طریق سوپاپ دود باز شده به سمت بیرون حرکت می دهد . این سیکل پس از این مرحله دوباره تکرار خواهد شد . مدت زمان باز بودن سوپاپها در یک زاویه معین باعث جریان بهتر گاز شده و پر شدن تخلیه کامل سیلندر را بهبود می بخشد .

( شکل 2 )








سیستم های آرایش مخلوط سوخت – هوا

وظیفه سیستمهای کاربراتوری یا انژکتوری ، تامین مخلوط سوخت و هوا جهت شرایط کارکرد آنی موتور می باشد .

در سالهای اخیر سیستمهای انژکتوری روش جدیدی را ابداع نمودند که مزایایی از قبیل صرفه اقتصادی ، بازده بیشتر موتور ، قابلیت رانندگی بهتر و نیزآلودگی کمتر را در بر داشته است .

سیستمهای انژکتوری با تعیین دقیق مقدار هوای ورودی وظیفه تامین مقدار مشخصی از سوخت را مطابق با شرایط بار موتور به عهده داشته و نیز کمترین آلودگی خروجی را نیز در بر خواهند داشت . در این سیستم و به جهت ثابت نگه داشتن کمترین آلودگی ترکیب و ساختار مخلوط سوخت – هوا به صورت کاملاً دقیق کنترل می شود .


قابلیت شتابگیری سریع

تمامی سیستمهای انژکتوری خود را با تغییرات بار موتور در هر شرایط کارکرد ، بدون هیچ وقفه ای مطابقت می دهند . این قابلیت در هر دو سیستم انژکتوری تک نقطه ای و نیز سیستم چند نقطه ای وجود دارد . سیستمهای چند نقطه ای سوخت را مستقیماً به طرف سوپاپ ورودی پاشش می کنند . در این نوع سیستم مشکلات مربوط به تغلیظ سوخت را در داخل سیلندر وجود ندارد . در سیستمهای انژکتوری تک نقطه ای ، بایستی مشکل وجود لایه های تغلیظ شده سوخت در سیلندر را بطریقی رفع کرد . این مشکل با ایجاد سیستم طراحی جدید که سوخت را مخلوط کرده و اندازه می گیرد رفع خواهد شد .

قابلیت استارت بهتر در هوای سرد

مقدار دقیق سوخت با درجه حرارت موتور و سرعت استارتر مشخص گریده و امکان استارت سریع و پایداری سیستم موتوردر دور آرام را فراهم می کند .

در فاز گرم شدن موتور ، سیستم دقیقاً از مقدار مشخصی سوخت جهت راه اندازی سیستم و در پاسخگویی به نیاز دریچه گاز در تامین کمترین مقدار مصرف سوخت استفاده می کند .





آلودگی خروجی کمتر

در این سیستم مخلوط سوخت – هوا تاثیر مستقیمی بر عمل تجمع گازهای خروجی از اگزوز خواهد داشت . در صورت کارکرد موتور با کمترین سطح آلودگی خروجی سیستم تشکیل مخلوط سوخت – هوا بایستی نسبت این مخلوط در حد ثابتی نگه دارد . دقت کارکرد سیستمهای ketronic امکلان ثابت نگه داشتن شکل مخلوط سوخت – هوا را فراهم آورده است .

تاریخچه سیستمهای سوخت رسانی انژکتوری

استفاده از سیستمهای سوخت رسانی انژکتوری به حدود 100 سال قبل باز می گردد . Gasmotorenfabik deutz سازنده پمپهای پلانجری پاشش سوخت از سال 1898 از این سیستم ابتدایی استفاده می کرد . مدت زمانی بعد ، استفاده از سیستم و تئوری در طراحی کامپیوتر ابداع گردید و سیستم های سوخت رسانی انژکتوری بر پایه طول مدت زمان پاشش سوخت ، بوجود مد . شرکت Bosch از سال 1912 تحقیقات وسیعی را در خصوص پمپهای انژکتوری بنزینی آغاز نمود. اولین موتور هواپیمایی که از سیستم انژکتوری Bosch استفاده می کرد با قدرت 1200 اسب بخار در سال 1937 وارد تولید سری گردید . مشکلات مربوط به سیستمهای کربراتوری از قبیل یخ زدگی و نیز خطرات آتش سوزی ، باعث بوجود آمدن انگیزه بیشتری در خصوص توسعه این دانش در صنعت هوانوردی گردید .

این پیشرفت نشانگر یک دوره جدید از سیستم انژکتوری در شرکت Bosch بود ولی تا زمان کاربرد این سیستم در خودروها راه طولانی باقی مانده است . در سال 1951 برای نخستین مرتبه سیستم انژکتوری پاشش مستقیم در یک خودروی کوچک نصب گردید . چند سال بعد این سیستم در خودروی 300SL از محصولات شرکت دایملر – بنز نصب گردید . درسالهای بعد پیشرفت های حاصله در خصوص ساخت و نصب پمپ های انژکتوری مکانیکی تداوم پیدا کرد . در سال 1967 این نوع سیستم گام بزرگتری رو به جلو برداشت . ابداع اولین سیستم انژکتوری الکترونیکی بنام سیستم کنترل فشار ورودی یا D-jetronic . در سال 1973 سیستم کنترل جریان هوا بنام L-jetronic در بازار خودرو ظاهر گردید و در همان زمان سیستم کنترل مکانیکی – هیدرولیکی و نیز سیستم مجهز به سنسور جریان هوا ابداع گردید . سال 1979 مقدمه ای جهت ظهور سیستم جدید دیگری بنام Motronic بود که از خصوصیات کنترل دیجیتال کارکرد موتور ، بهره برد . این سیستم شامل سیستم L-jetronic به همراه کنترل الکترونیکی اشتعال در موتور بود ( اولین میکروپروسسور در صنعت خودرو ) . در سال 1982 سیستم K-jetronic در شکل وسیع تری که شامل مدار کنترل حلقه بسته و سنسور اکسیژن ( لامبدا ) kejetronic بود در صنعت ظهور پیدا کرد . این سیستم به همراه سیستم mono – jetronic شرکت bosch و نیز سیستم پاشش تک نقطه ای در سال 1983 در خودروهای کوچک نصب گردید . در سال 1991 بیش از 37 میلیون خودرو در سرتا سر جهان مجهز به سیستمهای انژکتوری سوخت رسانی bosch گردیدند . 6/5 میلیون در سال 1992 مجهز به سیستم مدیریتی هوشمند شدند ، هم چنین تعداد 5/2 میلیون موتور کجهز به سیستم mono – jetronic و 2 میلیون موتور مجهز به سیستم های motronic شدند . امروزه سیستم های انژکتوری سوخت رسانی یکی از اجزاء ضروری صنعت خودرو سازی شده اند .




اصول کارکرد

سیستم اشتعال جهت آغاز مرحله احتراق در مخلوط متراکم شده سوخت – هوا و در زمان معینی بکار می رود . در موتورهای احتراق – جرقه ای ، این عمل توسط قوس الکتریکی ایجاد شده ما بین دو الکترود شمع ، انجام می گیرد . اشتعال صحیح ، زمینه ای برای عملکرد مناسب سیستم مبدل کاتالیتیکی در خودروها می باشد . عدم اشتعال به موقع ، منجر به وارد آمدن خسارت به مبدل کاتالیتیکی می شود که بر اثر گرمای زیاد ناشی سوخته شدن گازهای نسوخته در داخل مبدل کاتالیتیکی حاصل می شود .


نیازمندیهای سیستم

اشتعال در مخلوط

جهت اشتعالی قابل قبول در مخلوط استوکیومتریک سوخت – هوا قوس الکتریکی با انرژی معادل mj 2/0 مورد نیاز می باشد . بسته به غنی یا فقیر بودن مخلوط سوخت – هوا مقدار این انرژی نیز متغیر خواهد بود . این ارقام بیانگر بخشی از انرژی موجود در شمع ها می باشد . اگر انرژی اشتعال به مقدار کافی تولید نشود ، اشتعالی وجود نداشته و در نتیجه مخلوط سوخت – هوا بدرستی محترق نشده ودر نتیجه باعث بدکارکردن موتور خواهد شد. به همین علت ، بایستی انرژی اشتعال به حد کافی تولید گردد تا مخلوط سوخت – هوا تحت شرایط گوناگون ، محترق گردد. مخلوط قابل اشتغال کوچکی نیز ، جهت اشتعال کل مخلوط سوخت – هوا توسط شمع ، کافی می باشد . این مخلوط قابل اشتعال پس از احتراق ، اکثرا به سایر قسمتهای مخلوط داخل سیلندر انتقال می یابد. یک مخلوط مناسب از لحاظ عدم وجود مانع در عملکرد شمع ها ، خصوصیات اشتعال را بهبود بخشیده و مدت زمان جرقه و قوس الکتریکی بین دو الکترود را افزایش داده و بزرگتر می کند. موقعیت و طول جرقه توسط ابعاد شمع تعیین می گردد. مدت زمان اشتعال توسط نوع و طراحی سیستم اشتعال و نیز شرایط اشتعال آنی سیستم کنترل می گردد.



تولید جرقه

قبل از تولید جرقه ، به یک ولتاژ کافی جهت ایجاد قوس الکتریکی مابین دو الکترود شمع مورد نیاز می باشد. هنگامی که مرحله اشتغال آغاز می گردد ، ولتاژ سرالکترودها به سرعت از مقدار صفر تا ولتاژ نهایی مورد نیاز جهت ایجاد قوس الکتریکی ما بین دو سر الکترودها ، می رسد. ( ولتاژ اشتعال )

در نقطه اشتعال ، ولتاژ شمع ، کاهش پیدا کرده و ولتاژ را در حد ثابتی نگه می دارد. مخلوط سوخت – هوا تا زمانی که قوس الکتریکی ایجاد شده مابین دو سر الکترود وجود داشته باشد . قابل احتراق خواهد بود ( مدت زمان جرقه )

سرانجام ، قوس الکتریکیر سر الکترود شمع از بین رفته و ولتاژ به آرامی به صفر باز می گردد. ( شکل 1)

تلاطم و اغتشاش در مخلوط سوخت – هوا ، باعث از بین رفتن جرقه در شمع ها شده و در نتیجه منجر به احتراق ناقص در موتور می گردد. به همین علت ، انرژی موجود در کویل بایستی به اندازه ای باشد که مرحله اشتعال در شمع ها به طور کامل انجام گیرد.




طراحی سیستم

پمپ بنزین الکتریکی شامل عناصر ذیل می باشد :

- مجموعه پمپ

- موتور الکتریکی و قاب آن

موتور الکتریکی و مجموعه پمپ به طور مشترک در یک محل قرار گرفته اند بطوریکه در داخل سوخت به طور شناور می باشند . این ترتیب قرار گیری باعث ایجاد خاصیت خنک کنندگی بهتری در موتور الکتریکی می گردد . بخاطر عدم وجود اکسیژن مخلوط قابل احتراقی تشکیل نشده و در نتیجه خطر وجود انفجار و آتش سوزی در سیستم وجود ندارد . قاب انتهایی شامل رابط های الکتریکی سوپاپ مانع برگشت سوخت و رابطه های فشار در سمت پر فشار سیستم می باشد . سوپاپ مانع برگشت فشار سیستم رالحظاتی پس از خاموش شدن واحد و جهت جلوگیری از تشکیل شدن حبابهای بخار ثابت نگه می دارد . ابزار و تجهیزات متوقف کننده دیگری نیز می تواند در بخش انتهایی پمپ بکار رود .


تغییر در طراحی سیستم

بسته به نوع انتظارات از سیستم طراحیهای مختلفی را جهت برآورده کردن این نیازها می توان در نظر گرفت ( شکل 4 )

پمپ های جابجایی مثبت

شبکه چرخان ( RZP ) و پمپ های دنده داخلی ( IZP ) هر دو دسته پمپ های جابجایی مثبت طبقه بندی می شوند . هر دو نوع این پمپ ها از طریق اندازه متغیر و محفظه چرخان جهت تامین سوخت و مکش آنها از طریق تغییر در حجم عمل می کنند . هنگامیکه حجم به بیشترین مقدار خود می رسد دریچه تامین سوخت بسته شده و دریچه تخلیه باز می شود سپس سوخت تحت فشار ، با فشاری بالا به سمت بیرون تخلیه می گردد و حجم محفظه کاهش می یابد . محفظه های پمپ توسط یک مدور عمل می کنند .نیروی گریز از مرکز و فشار سوخت باعث تخلیه سریع و پر فشار سوخت در مسیر خود می گردد . نیروی گریز از مرکز مابین صفحه مدور و مسیر آن ، باعث افزایش ثابتی در حجم می گردد .


پمپ های هیدرولیک

پمپ های محیطی و کانال جانبی جزو پمپ های هیدرو کینتیک طبقه بندی می شوند. در این پمپ ها یک وسیله پیش برنده ( ایمپلر ) ذرات سوخت را شتاب داده و از این طریق قبل از اینکه سوخت رابداخل مانیفولد هدایت کند آنها را پر فشار می کند . پمپ های محیطی و کانال جانبی از لحاظ تعداد تیغه های بزرگتر و شکل آنها با یکدیگر تفاوت دارند ( هم چنین از لحاظ قرار گیری و موقعیت نیز با یکدیگر تفاوت هایی دارند ) به هر حال پمپ های محیطی تنها قادر به ایجاد فشار در محدوده 300 کیلو پالس می باشند و از این طریق سوختی دائمی و بدون نوسان را تامین خواهند کرد . این عامل سبب ایجاد صدای کمتری در حین کارکرد این نوع پمپ ها گردیده

و بازار مناسبی را در جهت نصب بر روی خودروها فراهم می نماید . پمپ های کانال جانبی تنها قادر به تولید فشار بالاتر از 100 کیلو پاسکال می باشند . یکی از مهم ترین استفاده های این پمپ ها به عنوان یک پمپ تقویت کننده در سیستمهایی می باشد که از پمپ های نوع داخل خط سوخت رسانی استفاده می کنند . از دیگر مواردکاربرد این نوع پمپ ها به عنوان مرحله اول از پمپ های دو مرحله ای نوع داخل باک حساس به مشکلات استارت و نیز در سیستم های انژکتوری پاشش تک نقطه ای می باشد .


فیلتر سوخت

آلودگیهای موجود در سوخت باعث عدم عملکرد مناسب رگلاتور فشار و انژکتورها می گردد . فیلتر به همین دلیل فیلتر سوخت در پایین پمپ الکتریکی نصب می گردد . این فیلتر شامل یک المنت کاغذی به ضخامت در حدود 10 میکرومتر می باشد . مدت زمانی تعویض بر حسب حجم فیلتر و مقدار آلودگی موجود در سوخت تعیین می شود ( شکل 5 )

سنسور دریچه گاز

این سنسور ، سیگنالی را بر اساس تغییر زاویه درچه گاز به ECU ارسال می کند . این سیگنال اطلاعاتی مانند عملگرهای دینامیکی ، تشخیص مقدار بار سیستم ( دور آرام ، بار کامل و نیم بار ) و ذخیره اطلاعات کمکی و استفاده از آن در صورت خرابی سنسور اصلی را شامل می شود . سنسور دریچه گاز بر روی مجموعه دریچه گاز قرار گرفته است . بطوریکه بر روی شفت هم محور با دریچه گاز می باشد . یک پتانسیومتر ، تغییر زاویه پره دریچه گاز را مشخص کرده و نسبت ولتاژی را از طریق یک مدار مقاومتی به ECU انتقال می دهد ( شکل 10 و 11 )

جهت مشخص کردن دقیق بار سیستم از دو پتانسیومتر یکپارچه شده ، استفاده می شود . واحد کنترل مقدار حجم هوای ورودی را توسط مقدار زاویه دریچه گاز و سرعت موتور ، محاسبه می کند . اطلاعات ارسالی از سنسورهای درجه حرارت ، این امکان را به واحد کنترل می دهند تا تغییرات در مقدار حجم هوای ورودی رابا توجه به تغییر درجه حرارت جبران کند .




شرایط کارکرد سیستم

استارت

محاسبات ویژه ای جهت مشخص نمودن مقدار پاشش سوخت در خلال مدت مرحله استارت انجام می گیرد . هم چنین تایمینگ ( زمان ) پاشش ویژه ای نیز جهت شروع مرحله پاشش بایستی وجود داشته باشد . مقدار پاشش سوخت مطابق با درجه حرارت موتور افزایش می یابد تا ساختار فیلم موجود از سوخت را بر روی مانیفولد ارتقاء دهد .

بدین طریق نیازمندیهای سیستم در رابطه با افزایش مقدار سوخت جهت افزایش سرعت ، به راحتی جبران می شود . به محض اینکه موتور ، استارت خورد ، مقدار سوخت اضافی در ابتدای مرحله استارت کم شده و پس از روشن شدن کامل و پایان مرحله استارت این مقدار سوخت اضافی به طور کامل قطع می شود . زاویه آوانس جرقه با توجه به درجه حرارت و سرعت موتور جهت مرحله استارت زنی بطور خودکار تنظیم می گردد .


مرحله بعد از استارت

در این مرحله مقدار سوخت اضافی که توسط مدار مکمل تهیه می شود ، کاهش خواهد یافت . مقدار کاهش بر اساس درجه حرارت موتور و زمان سپری شده از مرحله شروع بکار استارت صورت می گیرد . زاویه آوانس جرقه ، جهت تصحیح مقدار سوخت و شرایط مختلف کارکرد سیستم ، تنظیم می شود . این مرحله پس از انتقال به مرحله گرم شدن موتور از حرکت باز می ایستد .


مرحله گرم شدن

مراحل مختلفی بسته به نوع طراحی موتور کنترل خروجی آن ، در فاز گرم شدن بکار برده می شود . معیارهای اصلی در این سیستم جهت کنترل عبارتند از : قابلیت رانندگی بهتر ، کاهش آلودگی و صرفه جویی در مصرف سوخت .

تاخیر در تایمینگ جرقه باعث افزایش درجه حرارت گازهای خروجی گردیده و مرحله گرم شدن ضعیفی را به وجود می آورد ، هم چنین استفاده از مخلوط غنی و پاشش کمکی هوا ، درجه حرارت گازهای خروجی راافزایش خواهد داد .

در این حالت هوا به پایین دست سیستم خروجی پاشیده شده و مدت زمان پس از مرحله استارت را کاهش می دهد . پمپ هوا ، وظیفه تامین مقدار هوای کمکی را به عهده دارد .

هنگامیکه درجه حرارت به اندازه کافی بالا باشد ، این مقدار هوای اضافی اکسیداسیون گازهای هیدروکربن ( HC ) و CO در سیستم خروجی راانجام داده و به طور همزمان درجه حرارت مطلوب خروجی را تامین می کند . ( شکل 1 )