فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

ایده آل های خطی به ترتیب کوهن-مکوالی

چکیده G را یک نمودار غیرمستقیم ساده n راسی در نظر بگیرید و بگذارید برایده آل خطی مرتبطش دلالت کند مانشان می دهیم که تمام نمودارهای و تری G ، به ترتیب کوهن مکوالی هستند
دسته بندی ریاضی
بازدید ها 22
فرمت فایل doc
حجم فایل 111 کیلو بایت
تعداد صفحات فایل 22
ایده آل های خطی به ترتیب کوهن-مکوالی

فروشنده فایل

کد کاربری 1024
کاربر

ایده آل های خطی به ترتیب کوهن-مکوالی

چکیده- G را یک نمودار غیرمستقیم ساده n راسی در نظر بگیرید و بگذارید برایده آل خطی مرتبطش دلالت کند. مانشان می دهیم که تمام نمودارهای و تری G ، به ترتیب کوهن- مکوالی هستند ، دلیل ما بر پایه نشان دادن این است که دوگانه الکساندر I(G) ،خطی و ازمولفه است.
نتیجه ما فرضیه فریدی را که می گوید ایده آل درخت ساده شده به ترتیب کوهن- مکوالی، هرزوگ، هیبی، می باشد، وفرضیه ژنگ که می گوید یک نمودار وتری کوهن-مکوالی است اگر و تنها اگر ایده آل خطی اش در هم ریخته نباشد، را تکمیل می کند. ما همچنین ویژگی های دایره های مرتب کوهن- مکوالی را بیان می کنیم و نمونه‌هایی از گراف های مرتب غیروتری کوهن- مکوالی را هم ارائه می کنیم.

1-مقدمه
G را یک گراف ساده n راسی در نظر بگیرید پس G هیچ حلقه یا خطوط چندگانه ای پهن دو راس ندارد.) رئوس ومجموعه های خطی G توسط EG,VG را به ترتیب نشان دهید. ما ایده آل تک جمله ای غیر مربع چهارگانه با K که یک میزان است و جایی که را به G ارتباط می دهیم.ایده ال ایده آل خطی Gنامیده می شود.
توجه اولیه این مقاله ایده آل های خطی گراف های وتری است. یک گراف G وتری است اگر هر دایره طول یک وتر داشته باشد. اینجا اگر ،خطوط یک دایره طول n باشند، ما می گوییم که دایره وری یک وتر دارد اگر دو راس xj,xi در دایره به نحوی وجود داشته باشند که یک خط برای G باشند اما خطی در دایره نباشد.
ما می گوییم که یگ گراف G کوهن –مکوالی است اگر کوهن-مکوالی باشد. چنانکه هرزوگ، هیبی و ژنگ اشاره می کنند، طبقه بندی تمام گراف های کوهن-مکوالی شاید اکنون قابل کشیدن نباشند، این مسئله به سختی طبقه بندی کردن تمام مجموعه های ساده شده کوهن-مکوالی است.]9[.البته هرزوگ، هیبی و ژنگ در ]9[ ثابت کردند که وقتی G یک گراف وتری باشد،پس G در هر میدانی کوهن-مکوالی است اگر وفقط اگر به هم نریخته باشد.
ویژگی کوهن –مکوالی به ترتیب بودن، که شرایطی است ضعیف تر از کوهن-مکوالی بودن، توسط استنلی ]14[ در ارتباط با تئوری قابلیت جدا شدن غیرخالص معرفی شد.
تعریف 1-1- را در نظر بگیرید. یک M معیار B درجه دار کوهن –مکوالی به ترتیب نامیده می شود اگر یک تصفیه معین از معیارهای R درجه بندی وجود داشته باشد.


به نحوی که کوهن –مکوالی باشد، و ابعاد کرول خارج قسمت در حال افزایش باشند:


ما میگوییم یک گراف G کوهن-مکوالی به ترتیب است و در K اگر کوهن-مکوالی به ترتیب باشد. ما می توانیم به نتیجه هرزوگ، هیبی و ژنگ بر سیم البته با استفاده از این تضعیف شرایط کوهن-مکوالی. نتیجه اصلی ما فرضیه زیر است (که مستقل از خاصیت (K) است.
فرضیه 2-1 فرضیه 2-3.تمام گراف های وتری کوهن-مکوالی به ترتیب هستند.
بنابراین حتی گراف های وتری که ایده آل های خطی نشان در هم نریخته نیستند نیز هنوز یک ویژگی جبری را دارا هستند.فرضیه 2-3 همچنین حالت یک بعدی کار فردی در توده های ساده شده ]3[ را نیز عمومیت می بخشد.
مقاله ما به صورت زیر سازمان می یابد. در قسمت بعدی ، ما نتایجی از این ادبیات درباره دوگانگی الکساندر ودرباره گراف های وتری جمع می کنیم. در بخش 3،فرضیه 2.3 را ثابت می کنیم.
ما برخی از گراف های غیروتری در قسمت 4 را که دایره های کوهن-مکوالی را به ترتیب طبقه بندی می کنند بررسی می کنیم و در مورد برخی ازویژگی های گراف‌های شامل دایره های –n برای n>3 تحقیق می کنیم.
همچنین شرایط کافی را برای گرافی که نمی تواند کوهن-مکوالی به ترتیب باشد ،ارائه می کنیم.
2-اجزا مورد نیاز
درطول این مقاله، G بر یک گراف ساده روی رئوس n با مجموعه نقطه ای VG ومجموعه خطی EG دلالت می کند. ایده آل خطی ،جایی که را به G مربوط می سازیم.
گراف کامل در رئوس n که بر Kn دلالت شده است،گرافی است با مجموعه خطی ، یعنی گراف این ویژگی را دارد که خطی بین هر جفت رئوس وجود دارد. اگر x نقطه ای در G باشد باید بنویسیم N(x) که بر همسایه‌های x دلالت کند،یعنی آن رئوسی که خطی را با x شریکند. ما ابتدا باید به حالتی توجه کنیم که G یک گرافی وتری است.گراف های وتری ویژگی زیر را دارند:
لم 21- G,[6,7,12,15] را یک گراف وتری در نظر بگیرید، x را یک زیر نمودار کامل از G در نظر بگیرید.اگر ،پس نقطه ای به نام وجود داردکه زیرگراف به وجود آمده توسط مجموعه همسایه مربوط به x، یک گراف کامل باشد. این امر همچنین زیر نمودار به وجود آمده در را وادار می کند که یک زیر گراف کامل باشد.
یک پوشش راس گراف G یک زیر مجموعه از VG است به نحوی که هر خط G حداقل به یک راس A برخوردار داشته باشد. توجه کنیدکه ما هیچ وقت به داشتن یک راس مجزا در پوشش راس نیاز نداریم.
مثلا ، اگر ما گرافی در سه راس داشته باشیم و تنها خط موجود باشد، پس هر دو پوشش های راس هستند. پوشش های راس یک گراف G به دو گانه الکساندر مربوطند.
تعریف 2-2- I را یک ایده آل تک جمله ای غیرمربع در نظر بگیرید. دوگانه الکساندر غیرمربع ایده آل
است.

پس نتیجه ساده ای گرفته می شود:
لم 3-2- G را یک گراف ساده با ایده آل خطی در نظر بگیرید.پس

یک پوشش راس برای G است.

یک تجزیه درجه بندی شده آزاد حداقل به هر ایده آل همگون I از R مرتبط است.

که در آن R(j) بر معیار R به دست آمده از تغییر درجات R توسط j دلالت می کند.


الگوریتم STR کلی (تعمیم یافته)

داده ها پارامتر d مرتبه رگولاتور یعنی درجه R* ، و درجه S* را بدانیم چند مجموعه ای روبتگر Ao* به جای چند جمله ای C* که نامعلوم است (تقریب C*)
دسته بندی ریاضی
بازدید ها 11
فرمت فایل doc
حجم فایل 176 کیلو بایت
تعداد صفحات فایل 25
الگوریتم STR کلی (تعمیم یافته)

فروشنده فایل

کد کاربری 1024
کاربر

الگوریتم STR کلی (تعمیم یافته)

داده ها: پارامتر d مرتبه رگولاتور یعنی درجه R* ، و درجه S* را بدانیم. چند مجموعه ای روبتگر Ao* به جای چند جمله ای C* که نامعلوم است (تقریب C*)
چند جمله ایهای پایدار P* و Q*
سیگنالهای فیلتر شده زیر بایستی معرفی شوند:

گام 1 : تخمین ضرایب R* و S* بروش LS:

( C* : note)
گام 2 : سیگنال کنترل را از روی محاسبه می کنیم
تکرار گامهای فوق در هر پریود نمونه برداری
در صورت همگرایی تخمین : S* و R* گام بعدی با قبلی برابر است)

=

ویا:
فرم کلی در صورت عدم حذف همه صفرهای فرآیند
اتحاد (2) به شکل زیر نوشته می شود:
C*Q*=A*P*R'*+q-dB-*S* R'* از این رابطه بدست می آید.
و سیگنال کنترل می شود:

کنترل فید فوردوارد (پیشخور) – STR (دانستن دینامیک فرایند لازم است)کنترل پیشخور برای کاهش یا حذف اغتشاش معلوم بکار می رود. خود سیگنال فرمان می تواند برای STR ، یک اغتشاش معلوم فرض شود
مثالهایی از اغتشاش قابل اندازه گیری (معلوم): درجه حرارت و غلظت در فرایندهای شیمیایی درجه حرارت خارجی در کنترل آب و هوا – ضخامت کاغذ در سیستمهای milling machinc
مدل فرضی :
چند جمله ایهای ، S* و T* بایستی تخمین زده شوند و آنگاه:

مثال : تاثیر فیلتر کردن (همان فرایند مثالهای قبل را در نظر بگیرید) {رفتار الگوریتم تصمیم یافته توضیح داده می شود}
Y(t)+ay(t-1)=bu(t-1)+e(t)+ce(t-1)
مقادیر واقعی پارامتر : a = -0.9 ,b=3 , c=-0.3
فیلترها را بصورت زیر در نظر بگیرید

اتحاد: C * Q*=A*P*R'*+q-dB-*S*
در این مثال : از مدل فرآیند داریم
اتحاد

قانون کنترل:
R*P*=R'*P*B+*


فیلتر باید پیش فاز باشد که در نتیجه سیستم حلقه بسته بصورت پایین گذر فیلتر خواهد شد.
سئوال P1 و q1 را چگونه انتخاب کنیم؟
جواب: یک روش انتخاب بررسی اثر آنها بر روی واریانس y و u است. فرض کنید e(t) دارای واریانس 1 است.


حالت (a): no filtering P"q1=0


این حالت همان وضعیت کنترل حداقل واریانس است بدون هیچگونه فیلتر کردن .
حالت q1=-0.3 p1=0(b)

سه مبدا

الگوریتم STR کلی( تعمیم یافته):
داده ها: پارامترd، مرتبه رگولاتور یعنی درجه و درجه را بدانیم. چند جمله ای رویتگر ( بجای چند جمله ای که نامعلق است
( تقریب ) و چند جمله ای پایدار و سیگنالهای فیلترشده زیر بایستی معرفی شوند:
و
گام 1: تخمین ضرایب و به روش LS:

) Note: )
گام 2: سیگنال کنترل را از روی محاسبه می کنیم.
تکرار گامهای فوق در هر پریود نمونه برداری:
( گام بعدی با قبلی برابر است)
در صورت همگرایی تخمین:



و یا
فرم کلی در صورت عدم حذف همه صفرهای فرآیند اتحاد(2) به شکل زیر نوشته می شود: از این رابطه بدست می آید:
و سیگنال کنتر ل می شود ( مثال در پائین آمده نحوه انتخاب P,Q فیلتر ) کنترل فیدفور وارد( پیشخور)STR-( دانستن دینامیک فرآیند لازم است)
کنترل پیشخوری برای کاهش یا حذف اغتشاش معلوم بکار می رود. خود سیگنال فرمان می تواند برای STR ، یک اغتشاش معلوم فرض شود.
( مثالهایی از اغتشاش قابل اندازه گیری(معلوم): در جه حرارت و غلظت در فرآیندهای شیمیایی در جه حرارت خارجی در کنترل آب و هوا- مشخصات کاغذ در سیستمهایmilling machine ).
مدل فرضی:
اغتشاش معلوم
چند جمله ایهای و و بایستی تخمین زده شود و آنگاه:

مثال: تأثیر فیلتر کردن( همان فرآیندهای مثالهای قبل را در نظر بگیرید) (رفتار الگوریتم تعمیم یافته توضیح داده می شود.)

مقادیر پارامتر: ، ،


مبحث بردارها

تساوی در بردار موازی، هم جهت و هم طولی دو بردار به تساوی آن دو می‌انجامد
دسته بندی ریاضی
بازدید ها 30
فرمت فایل doc
حجم فایل 420 کیلو بایت
تعداد صفحات فایل 50
مبحث بردارها

فروشنده فایل

کد کاربری 1024
کاربر

مبحث بردارها

بردارها:
تساوی در بردار: موازی، هم جهت و هم طولی دو بردار به تساوی آن دو می‌انجامد.
مجموع دو بردار : روش متوازی الضلاع
روش مثلثی
خواص بردارها:
شرکتپذیری:
بردار صفر: انتها و ابتدای بردار بر هم منطبق است. و با o نشان می‌دهیم.
برای هر بردار دلخواه داریم
قرینه برای یک بردار: اگر بردار معلومی باشد برای برداری با همان اندازه و جهت مخالف آن قرنیه نام دارد و با مشان داده می‌شود.
تفاضل دو بردار: تفاضل دو بردار را بصورت زیر تعریف می‌کنیم:

تذکر: اگر بردار و اسکالر معلوم باشند حاصلضرب است. یعنی برداری با همان جهت ولی برابر طویلتراز اگر و برداری مختلف الجهت با ولی برابر طویلتر از اگر .
برداریکه: هر برداری به طول واحد را یک برداریکه گوئیم. اگر بردار نا صفر باشد یک بردار یکه است.

زاویه بین دو بردار: منظور از زاویه بین دو بردار ناصفر که با نشانداده می‌شود یعنی زاویه‌ای که باید بچرخد تا جهتش با جهت یکی شود.
°
°
°
ضرب اسکالر( ضرب نقطه‌ای یا داخلی)
منظور از حاصلضرب اسکالر دو بردار که با نشان‌داده می‌شود یعنی عدد:
زاویه بین دو بردار را می‌توان از به یا از به سنجید. زیرا و
تذکر: 1.
2.

3. حاصلضرب صفرا ست اگر تنها اگر همچنین بردار صفر بر هر برداری عمود است.
مثال: مثال : اگر خط جهت دار و بردار معلوم باشد منظور از تصویر اسکالر روی L که به صورت نوشته می‌شود.
یعنی:
بطور کلی با معلوم بودن دو بردار منظور از تصویر اسکالر روی یعنی

قضیه: اگر و آنگاه :
نتیجه:
مثال : اگر بردار آنگاه:
هر برداری در ضرب شود مؤلفه اول بدست می‌آید و اگر در ضرب شود مؤلفه بدست می‌آید:


تذکر1:

آنگاه
2.

مثال: و را در صورتیکه با هم زاویه ° 60 بسازند. را بیابید.


ضرب برداری( خارجی)
برداری است که بر صفحه دو بردار عمود است.
منظور از حاصلضرب خارجی دو بردار که با نشان داده می‌شود یعنی بردار بطوریکه:
1- اندازة C برابر است با:
2- بر صفحه عمود است و در جهت حرکت یک پیچ( راست دست) ک تیغه‌اش از به باندازه می‌چرخد نشان داده
تذکر: هرگاه یا یا آنگاه
مساحت متوازی‌الضلاع ارتفاع قاعده
با توجه به فرمول قبل و شکل بالا نتیجه می‌‌گیریم که مساحت متوازی‌الضلاعی که توسط بردارهای و ساخته می‌شوند با ضرب خارجی برابر است.
و مساحت مثلث ساخته شده توسط دو بردار قبل نصف مقدرا قبلی است .
مساحت مثلث
تذکر: حاصلضرب خارجی با معکوس شدن و ترتیب بردارهای تغییر علامت می‌دهد.


مثال هرگاه . بردارهای متعاعد یک، باشند.

تذکر :1

2

3-ضربهای برداری شرکت‌پذیر نیستند.
قضیه: هرگاه :

آنگاه

مثال: مساحت مثلث به راسهای:
و و را بیابید.







* ضربهای سه تایی از بردارها
حاصلضرب سه تایی را در نظ بگیرید واضح است که:


که درآن مساوی ارتفاع(h) متوازی سطوح پوشیده بوسیلة بردارهای است و چون مساحت قاعده متوازی‌الضلاع است پس متوازی‌الضلاع برابر حجم متوازی‌السطوح است.
قضیه:‌هرگاه‌ ‌و ‌،‌ آنگاه

مثال: ثابت کنید

* صفحه:
یک صفحه بردار ناصفر عمود بر صفحه بطور منحصر بفرد مشخص می‌شود بردار n قائم بر صفحه نامیده میشود.
قضیه: هر صفحه معادله‌ای به شکل دارد که در آن A,B,C همگن صفر نیستند بر عکس هر گاه C,B,A همگی صفر نباشند هر معادله به شکل (1) معادله یک صفحه را مشخص می‌کند.
معادله صفحه‌ای که از نقطة میکند و بردار قائم آن است عبارتست از
مثال: بازای دو نقطه معلوم:


صفحه مابر عمود بر خط گذرنده از رابیابید:

صفحه P به معادله عبارت است از:

مثال: معادله صفحه‌ای و موازی دو بردار و و را محاسبه کنید.
مثال : معادله صفحه گذرنده از نقاط و و عمود بر صفحه باشد را بدست آورید.



N عمود بر صفحه مورد نظر


* خطوط در
خط ما با یک نقطه معلوم روی L و بردار دلخواه موازی L بطور مختصر به فرد مشخص میشود فرض کنید: نقطه دلخواهی در باشد در اینصورت هر گاه باشد یعنی که t یک اسکالر است.




معادلات پارامترهای خط



معادله متعارف خط L
با معادله خطی که از نقطه می‌گذرد و با بردار u موازی است.
تذکر:
اگر یکی از مخرجهای c,b,a در معادله متعارف صفر باشد صورت نیز باید صفر باشد مثلاَ اگر ، معادله خط بصورت زیر نوشته می‌شود.

مثال: معادله خط گذرانده از نقطه موازی خط
حل :

مثال:
فصل مشترک دو صفحه
را بدست آورید:






مثال:
معادله خط گذرنده از دو نقطه: ،
حل :
مثال :
ثابت کنید خط: و فصل مشترک صفحات و موازی‌اند:
و
حل :
بردار فصل مشترک

* توابع برداری:
در این فصل با ترکیب حساب دیفرانسیل انتگرال و بردارها مطالعه حرکت اجسام در فضا می‌پردازیم برای این منظور مؤلفه‌های عددی بردار شعاعی از مبدأ تا جسم را توزیع مشتق‌پذیری از زمن فرض کنیم و به این ترتیب بردارهای جسم را توصیف می‌کنند بدست میآوریم:
بردار شعاعی
از مبدآ تا نقطه که مکان زیر را در لحظه t از حرکتش در فضا بدست می‌آوریم.
* مشتق یک تابع برداری:
اگر و و توابعی با مقادیر حقیقی باشند از t باشند و بردار

یک تابع با مقادیر برداری از t باشد بردار مشتق F نسبت به t می‌باشد مانند حالت حرکت در صفح طول بردار بسرعت، مقدار سرعت جسم و جهت بردار سرعت جهت حرکت است.
مثال: بردار مکان یک جسم متحرک در لحظه t را مشخص می‌کند.
در مقدار سرعت و جهت ر مشخص کنید در چه لحظه‌ای در صورت وجود سرعت و شتاب جسم بر هم عمودند.

جهت سرعت


در لحظه شتاب و سرعت بر هم عمودند.
* قاعده زنجیره‌ای:
اگر مکان ذره‌ای باشد که روی یک مسیر در حرکت است و اگر با قرار دادن تابعی از بجای متغیرها را عوض کنیم مکان ذره تابعی از S می‌شود داریم: