فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

فایل شاپ

فروش مقاله،تحقیقات و پروژه های دانشجویی،دانلود مقالات ترجمه شده،پاورپوینت

تحقیق بررسی انرژی مغناطیسی

تحقیق بررسی انرژی مغناطیسی در 17 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 65 کیلو بایت
تعداد صفحات فایل 17
تحقیق بررسی انرژی مغناطیسی

فروشنده فایل

کد کاربری 6017

تحقیق بررسی انرژی مغناطیسی در 17 صفحه ورد قابل ویرایش


محاسبه متوسط ممان مغناطیسی هسته در یک میدان H و دمای T

Application of canonical distribution in (Nuclear Magnetism)

ماده را در نظر می گیریم که دارای N0 هسته در واحد حجم باشد. و در یک میدان مغناطیسی H قرار گرفته باشد.

هر هسته دارای اسپین و ممان مغناطیسی است.

ممان متوسط مغناطیسی ماده (در جهت H) در درجه حرارت T چقدر است؟

فرض می کنیم که هر هسته دارای برهم کنش ضعیف با سایر هسته ها و سایر درجات آزادی است. همچنین یک هسته را بعنوان سیستم کوچک در نظر می گیریم و بقیه هسته ها و سایر درجات آزادی را بعنوان منبع حرارتی می گیریم.

هرهسته می‌تواند دارای دوحالت باشد+یا هم‌جهت بامیدان واقع در تراز انرژی پائین

یا در خلاف جهت میدان واقع در تراز انرژی بالا

(Cثابت تناسب است )

چون این حالت دارای انرژی متر است پس احتمال یافتن هسته در آن بیشتر است.

از طرفی احتمال یافتن هسته در حالت تراز بالای انرژی برابر است با



و چون این حالت دارای انرژی بیشتری است پس احتمال یافتن هسته در آن کمتر است. (چون تعداد حالات بیشتر است با افزایشE، افزایش می یابد و ذره شکل پیدا می شد در حالت بخصوص)

و چون احتمال یافتن هسته در حالت + بیشتر است پس ممان مغناطیسی هسته نیز باید در این جهت باشد.

با توجه به دو رابطه های مقابل مهمترین متغیر در این دو رابطه که نسبت انرژی مغناطیسی به انرژی حرارتی را نشان می دهد پارامتر زیر می باشد.





که نسبت انرژی مغناطیسی به انرژی حرارتی را نشان می دهد پارامتر زیر می باشد:



واضح است که

اگر



نمای هر دو e یعنی احتمال اینکه هم جهت با H باشد برابر با احتمال اینکه در خلاف جهت H باشد.

در اینصورت تقریباً کاملاً بطور نامنظم جهت گیری می کند بطوریکه:



از طرف دیگر اگر

اگر احتمال هم جهت بودن ؛ H بیشتر از خلاف جهت است



تمام این نتایج کیفی را به نتایج کمی تبدیل می کنیم.

بوسیله محاسبه واقعی متوسط

در حالت تعادل حرارتی داریم







و این برای زمانی است که اسپینها در رابطه با شبکه اطرافشان مورد بررسی قرار می‌گیرند از اینجا n0 اختلاف تعداد اسپینها در حالت تعادل حرارتی بین شبکه اسپینی و میدان مغناطیسی خارجی است، بطوریکه در این حالت تفاوت مقادیر انرژی گرمایی ناشی از دمای شبکه اسپینی و انرژی پتانسیل مغناطیسی ناشی از میدان آنچنان کم باشد که تعداد انتقالات از بالابه پایین و از پایین به بالا دارای تفاوت اندکی بوده که در نتیجه آن تعداد اسپینهای تراز پائین نی اندکی (3ppm) از تعداد اسپینهای تراز بالا بیشتر باشند در این صورت گفته می شود که ماکزیمم مغناطیسی شدن حاصل می شود. مشخصه زمانی برای نزدیک شدن به این تعادل احرارتی که متعاقب آن ماکزیمم مغناطیسی شدن بدست می آید زمان T1 نام دارد. که برابر عکس مجموع احتمال انتقالات در واحد زمان است.

بهمین خاطر T1 را زمان استراحت یا Relaxation Time و بطور دقیقتر زمان استراحت اسپین- شبکه Spin-Lattic Relaxation Time نامیده اند. لازم به ذکر است که در T1، مقدار e-1 یا 0.63 ماکزیمم مغناطیسی شدن



n(t) اختلاف تعداد در هر لحظه از زمان t است.

n0 اختلاف تعداددر حالت تعادل حرارتی (بین شبکه اسپینی و میدان مغناطیسی خارجی است) T1 مشخصه زمانی نزدیک شدن به حالت تعادل حرارتی است که Spin-Lattice Relaxation نام دارد.


تحقیق بررسی انفجار انرژی

تحقیق بررسی انفجار انرژی در 54 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 63 کیلو بایت
تعداد صفحات فایل 54
تحقیق بررسی انفجار انرژی

فروشنده فایل

کد کاربری 6017

تحقیق بررسی انفجار انرژی در 54 صفحه ورد قابل ویرایش


مبانی تئوری انفجار:

1- مقدمه:

در طول حداقل 200 سال گذشته، کاربرد واژه انفجار متداول بوده است. در زمانهای قبل از آن این واژه به تجزیه[1] ناگهانی مواد و مخلوطهای انفجاری با صدای قابل توجهی نظیر «رعد» اطلاق شده است. این مطلب از دیرباز شناخته شده است که انفجار تجزیه سریع مقدار معینی ماده است که به محض رخداد یک ضربه یا گرمایش اصطکاکی اتفاق می‌افتد. بنابراین تجزیه این مواد در شرایط مناسب می‌تواند بصورت ساکت و آرام رخ دهد.

کلمه انفجار[2] از نظر فنی به معنی انبساط ماده به حجمی بزرگتر از حجم اولیه است. آزاد شدن ناگهان انرژی که لازمه این انبساط است. غالباً از طریق احتراق سریع، دتونیشن[3] (که در فارسی همان انفجار معنی می‌شود)، تخلیه الکتریکی با فرایندهای کاملاً مکانیکی صورت می‌گیرد. خاصیت متمایز کننده انفجار، همانا انبساط سریع ماده است. به نحویکه انتقال انرژی به محیط تقریباً بطور کامل توسط حرکت ماده (جرم) انجام می‌شود. در جدول زیر مقایسه‌ای بین چند فرآیند آزادسازی انرژی انجام شده است:




برای شعله تقریباً هیچ انتقال جرمی به اطراف رخ نمی دهد در حالیکه نیروی پیشرانش یک اسلحه قادر به راندن گلوله است و یک ماده منفجره قوی[4] هر چیز در تماس با خود را تغییر شکل داده و یا ویران می‌کند. قدرت منهدم کننده این مواد را «ضربه انفجار»[5] نامیده می‌شود که مستقیماً با حداکثر فشار تولید شده مرتبط است. توجه کنید که در جدول (بالا)، هیچگونه توصیفی از محل رخداد (تونیشن ماده منفجره قوی ارائه نشده است. این بدان معناست که فرایند دتونیشن از محدودیتهای فیزیکی مستقل است.

با توجه به مطالب بالا واضح است که دتونیشن تنها یکی از انواع حالات پدیده انفجار است بعبارت دیگر واژه دتونیشن تنها باید به فرآیندی اطلاق شود که در طی آن یک «موج شوک»[6] انتشار یابد.

متاسفانه بعلت قفرلفات مناسب فنی در زبان فارسی، دتونیشن به معنی عام انفجار ترجمه می‌شود و بنابراین در ادامه این مبحث برای پرهیز از اشتباه و رسا بودن مطلب همان واژه دتونیشن را به کار برده خواهد شد.

سرآغاز تحقیقات اخیر بر روی دتونیشن به سالهای 45-1940 م. که «زلدویچ» و «ون نیومان» هر یک به طور جداگانه مدل یک بعدی ساختار امواج دتونیشن را فرمولبندی کردند باز می‌گردد، گرچه یک مدل واقعی سه بعدی تا اواخر سال 1950 م به تاخیر افتاد.

2- پدیده دتونیشن:

دتونیشن یک واکنش شیمیائی «خود منتشر شونده»[7] است که در طی آن مواد منفجره اعم از مواد جامد، مایع، مخلوطهای گازی، در مدت زمان بسیار کوتاه در حد میکروثانیه. به محصولات گازی شکل داغ و پرفشار با دانسیته بالا و توانا برای انجام کار تبدیل می‌شود. فرض بگیرید قطعه‌ای از مواد منفجره، منفجر گردد. به نظر می‌رسد که همه آن در یک لحظه و بدون هیچ تاخیر زمانی نابود می‌گردد. البته در واقع دتونیشن از یک نقطه آغازین شروع شده و از میان ماده بطرف انتهای آن حرکت می‌کند. این عمل بخاطر آن آنی بنظر می‌رسد که سرعت رخداد آن بسیار بالاست.

از نظر تئوری دتونیشن ایده‌ال واکنشی است که در مدت زمان صفر (با سرعت بی‌نهایت) انجام شود. در اینحالت انرژی ناشی از انفجار فوراً آزاد می‌شود اصولاً زمان واکنش بسیار کوتاه یکی از ویژگیهای مواد منفجره است. هر چه این زمان کمتر باشد، انفجار قویتر خواهد بود. از نظر فیزیکی امکان ندارد که زمان انفجار صفر باشد. زیرا کلیه واکنشهای شیمیائی برای کامل شدن به زمان نیاز دارند.

پدیده دتونیشن با تقریبی عالی مستقل از شرایط خارجی است و با سرعتی که در شرایط پایدار[8] برای هر ترکیب، فشار و دمای ماده انفجاری اولیه ثابت است منتشر می‌شود. ثابت بودن سرعت انفجار، یکی از خصوصیات فیزیکی مهم برای هر ماده منفجره می‌باشد در اثر دتونیشن، فشار، دما و چگالی افزایش می‌یابند. این تغییرات در اثر تراکم محصولات انفجار حاصل می‌گردند.

پدیده‌ای که مستقل از زمان در یک چارچوب مرجع حرکت می‌کند. «موج» نامیده می‌شود و ناحیه واکنش دتونیشن، «موج دتونیشن»[9] یا موج انفجار نامیده می‌شود. در حالت پایدار این موج انفجار بصورت یک ناپیوستگی شدید فشاری که با سرعت بسیار زیاد و ثابت VD از میان مواد عبور می‌کند توصیف می‌شود واکنش شیمیائی در همسایگی نزدیک جبهه دتونیشن[10] است که باعث تشکیل موج انفجار می‌شود. این موج با سرعتی بین 1 و تا 9، بسته به طبیعت فیزیکی وشیمیائی ماده منفجره حرکت می‌کند. این سرعت را می‌توان با استفاده از قوانین ترموهیدرودینامیک تعیین نمود. عواملی که در سرعت انفجار نقش دارند عبارتند از: انرژی آزاد شده در فرآیند، نرخ آزاد شدن انرژی، چگالی ماده منفجره و ابعاد خرج انفجاری.

یک مدل ساده برای این پدیده مطابق شکل زیر از یک «جبهه شوک»[11] و بلافاصله بدنبال آن یک ناحیه انجام واکنش که در آن فشارهای بسیار بالا تولید می‌شود، تشکیل شده است. ضخامت ناحیه واکنش در انفجار ایده‌آل صفر است و هر چه انفجار بحالت ایده‌ال نزدیکتر باشد. ضخامت این ناحیه کمتر است. نقطه پایان این ناحیه، محل شروع ناحیه فشار دتونیشن[12] است.



مدل یک بعدی دتونیشن

فشار دتونیشن با رابطه زیر به سرعت دتونیشن و دانسیته مواد منفجره وابسته است:

(1)

که P مصرف فشار دتونیشن و P مصرف چگالی محصولات و P0 چگالی ماده منفجره است. بر اساس این فرض که چگالی محصولات دتونیشن بزرگتر از چگالی مواد منفجره اولیه است، یک رابطه کاربردی بصورت زیر استخراج می‌گردد.

(2)

از آنجا که زمان رخداد واکنش شیمیائی در یک فرآیند دتونیشن بسیار کوتاه است. انتشار و انبساط گازهای داغ حاصل در ناحیه واکنش بسیار اندک و غیر متحمل است و لذا این گازها هم حجم مواد منفجره اولیه باقی می‌مانند. این مطلب دلیل اصلی این نکته است که چرا فشار پشت جبهه انفجار بسیار بالاست. این فشار برای مواد منفجره نظامی در حدود Gpa 19 تا Gpa35 و برای مواد منفجره جاری کمتر است. همانطور که قبلاً ذکر گردید، موج دتونیشن مستقل از شرایط خارجی است. علیرغم این استقلال، جریان محصولات گازی که در پشت جبهه موج حرکت می‌کنند به زمان و شرایط مرزی وابسته است برای مثال یک بلوک مستطیل بزرگ از یک ماده منفجره را در نظر بگیرید که بر روی کل یکی از سطوح آن، به طور همزمان دتونیشن آغاز می‌شود. این سطح در خلا قرار دارد و هیچ مانعی برای انبساط گازها وجود ندارد. موج صفحه‌ای دتونیشن با سرعت ثابت بدرون ماده پیشروی می‌کند و گازهای حاصل از انفجار که بلافاصله در پشت این جبهه موج قرار دارند با سرعتی کمتر از سرعت موج که سرعت جرم نام دارد در همان جهت حرکت می‌کنند. اما در سطح عقبی، گازها مشغول فرار در جهت مخالف هستند (در اثر خلا). همچنین فشار گاز در پشت جبهه موج بسیار بالاست، ولی در خلا پشت سر، صفر است لذا فشار بصورت منحن وار بین ایندو موقعیت تغییر می‌کند. نموداری از تغییرات فشار و سرعت جرم برای یک ماده منفجره جامد در شکل زیر نشان داده شده است.

همانطور که ملاحظه می‌شود ناحیه همسایه منطقه واکنش بسیار کم تحت تاثیر تغییر شرایط مرزی قرار می‌گیرد.

آغاز همزمان دتونیشن از روی کل یک سطح مشکل است. در عمل آسانتر است که آغاز انفجار از یک نقطه باشد. در اینحالت موج دتونشین از یک نقطه درون ماده منفجره گسترش یافته و گرادیان فشار در اینحالت از آنچه در شکل صفحه قبل نشان داده شده، تیزتر خواهد بود.

وقتی از مواد منفجره برای راندن و بحرکت در آوردن سایر مواد و سازمان‌ها استفاده می‌شود محاسبه دقیق پروفیل فشار و سرعت جرم، ورودیهای لازم برای محاسبات حرکت سازه رانده شده می‌باشد. شکل این پروفیلها به معادله حالت محصولات انفجار وابسته‌اند، معادلاتی که تلاشهای بسیاری برای بدست آوردن آنها انجام شده و در دست انجام است.

3- موج شوک:[13]

یک موج شوک، جبهه شوک یا مختصراً یک شوک، موجی است که در ماده یک جهش[14] فشاری (یا تنشی) ناگهانی و تقریباً ناپیوسته ایجاد می‌کند، این موج بسیار سریعتر از امواج صوتی منتشر می‌شود، بدین معنی که این موج نسبت به محیط پیرامون خود فرا صوتی است و این خاصیت خود را بدون تغییر حفظ می‌کند.

موج شوک از جمله خواص اغلب مواد است و از خاصیتی از ماده که بر اساس آن سرعت انتقال صوت در ماده بصورت می‌باشد منتج می‌شود. اندیس s معرف حالت آنتروپی پایاست. این موج از نظر ترمودینامیکی برگشت ناپذیر است. و لذا آنتروپی سیستم در جبهه شوک در اثر لزجت و هدایت حرارتی افزایش می‌یابد. امواج شوک که امواج فشاری نیز نامیده می‌شوند، عامل شتابگیری ذرات ماده، در جهت انتشار خود هستند.

تاریخچه:

انرژی انفجار عمدتاً به عنوان ابزاری قدرتمند جهت تخریب به کار گرفته شده و اثرات سودمند آن کمتر مورد توجه و بررسی قرار گرفته است، با اینکه سالیان بسیاری است که بشر این انرژی توانمند را به کار گرفته، لکن از سال 1950 تحقیقات در ضمیمه بکارگیری آن در جهت تولید و سازندگی آغاز گردید.

آنچه در ابتدای مطالعات توجه محققان را معطوف خود داشت، چگونگی رفتار قطعه در مقابل امواج دینامیک ناشی از انفجار بود که در این راستا جهت بررسی تغییر شکل لحظه‌ای قطعات در مجاورت انفجار تلاشهایی صورت گرفته است.

با ابداعاتی که توسط Johnson انجام گرفت، روشهای شکل دهی انفجاری جایگاه خود را در اذهان پیدا کرد. وی در سالهای 1966 و 1967 با استفاده از مختصات اگر انرژی برای مسائل دو بعدی با تقارن مدوری تحت اثر ضرب در ناحیه الاستیک - پلاستیک، یک روش تحلیلی ارائه نمود و با ارائه مثالهایی نظیر گلوله کره و استوانه نیکلی (با سرعت 150) با صفحات ضخیم آلومینیومی، آنرا تشریح کرده.

Jones در سال 1972، طی مقاله مفصلی، به بیان چگونگی پاسخ فلز به بارگذاری ضربه‌ای ناشی از انفجار یک ماده منفجره در تماس با سطح آن پرداخت. در این مقاله، سلسله اتفاقاتی که در طی رخداد فرآیند انفجار در یک ماده منفجره رخ می‌دهد، چگونگی تولید و انتشار موج شوک در درون ماده منفجره و درون فلز و نیز برهمکنش موج شوک با فلز، به تفصیل توضیح داده شده است.

Pearson در سال 1972، در رابطه با روشهای کاربردی شکل‌دهی انفجاری، تحقیقاتی انجام داد و ضمن بیان پارامترهای موثر، فرآیندهای شکل‌دهی را با توجه به موقعیت ماده منفجره نسبت به سطح قطعه کار طبقه بندی نمود.

Zernow و Lieberman در سال 1972 با بیان چند مثال علمی، به بیان «تعامل ملاحظات فنی و اقتصادی» در فرآیندهای انفجاری پرداختند و در طی آن راهنماییهای ارزنده‌ای درباره نحوه ساخت و انتخاب جنس مواد مختلفی که تجهیزات سیستم شکل‌دهی باید از آنها ساخته شوند بنحوی که از لحاظ اقتصادی و فنی قابل توجیه باشند ارائه نمودند.

Heifitz در سال 1973 با ارائه مثالهائی در خصوص پوسته کروی و صفحه دایروی و مطالعه برآمدگی آنها پس از اعمال ضربه، ضمن توجه به تغییر شکلهای بزرگ و روند رشد کرنش پلاستیک با زمان، معادلات اساسی (روابط تنش- کرنش) را فقط به شکل عددی المان محدود به کار گرفته است.

Osaka و همکاران در سال 1986، تغییر شکل ورقهای گرد را برای ساخت مخازن تحت فشار، بوسیله انفجار در زیر آب و با استفاده از مختصات لاگرانژی و استفاده از روش تفاضل محدود مورد بررسی قرار داده‌اند و در بررسی معادلات تنش- کرنش، رفتار فلز را فقط بصورت الاستیک- کاملاً پلاستیک در نظر گرفته‌اند.

Fujita و همکاران در سال 1995 با ارائه سه مدل رفتاری در ناحیه الاستیک- پلاستیک صفحه فلزی تحت اثر بار ناگهانی با فشار یکنواخت را تحلیل نمودند و نشان دادند که اثر موجهای خمشی روی مکانیزم تغییر شکل، با روش تحلیلی یکسان است و حاصل کار هماهنگی خوبی را نشان می‌دهد، حتی اگر اثرات کرنش و نرخ سخت شوندگی آن بر روی تغییر شکلهای بوجود آمده منظور شود.

Comstockr و همکاران در سال 2001 روش جدیدی برای شبیه‌سازی آزمایشهای شکل‌دهی انفجاری صفحات، ارائه کردند و نشان دادند که این روش ابزار مهمی برای تشخیص شکل‌پذیری و تحمل بارهای خارجی برای آلیاژهاست. این شبیه‌سازی، بوسیله تئوری قوی و در محدوده بزرگی از تغییر شکل (تا حد کشش عمیق) انجام شده است، ولی در طی آن به عامل زمان و سرعت بارگذاری توجهی نشده است.

Mynors و Zhang در سال 2002 و در طی یک مقاله بسیار مفصل به بررسی همه جانبه تواناییها و قابلیت‌های شکل‌دهی انفجاری پرداختند. در تاریخچه این اثر تحقیقی، روندی که در طی آن فرآیند شکل‌دهی انفجاری به یک روش تولیدی موفق و سودمند تبدیل شده است شرح داده شده است.

در طی یک ده اخیر توسط لیاقت و همکاران، تحقیقات گسترده‌ای در داخل کشور، بر روی فرآیندهای شکل‌دهی در سرعتهای بالا انجام گرفته و در حال انجام است مخصوصاً آزمایشهای شکل‌دهی انفجاری آنان که به منظور تولید قطعات مخروطی برای کاربردهای نظامی و غیر نظامی انجام گرفت. بسیار قابل توجه است.

درویزه، پاشایی در سال 1381 با ساحت دستگاه شکل‌دهی ورقهای فلزی بروش انفجار مخلوط گازها، فعالیت‌های داخلی را وارد مرحله جدیدی نمود. استفاده از گاز بعنوان ماده منفجره یکی از جدیدترین رویکردهای شکل‌دهی انفجاری است.



شکل‌دهی فلزات با سرعت بالا:

فرایندهای شکل‌دهی فلزات در سرعت بالا (H.V.F) High Velocity Forming یکی از دستاوردهای مهم و ارزشمند صنعتی در عصر اتم و فضا محسوب می‌شود. این فرایندها ثابت کرده‌اند که در حل بسیاری از مسائل و مشکلات تولید که با استفاده از روشهای صنعتی بسیار مشکل، زمانبر و گران تمام می‌شود. بسیار مفید و توانمند هستند بزرگ شدن ابعاد قطعه‌کار، لزوم استفاده از مواد بسیار سخت و مقاوم در برابر روشهای متداول ماشینکاری و لزوم تولید قطعاتی دقیق و پیچیده از عوامل توسعه و پیشرفت دانش فنی این روش محسوب می‌شود اما عمده‌ترین مزیت این روشها، قابلیت آنها برای شکل‌دهی قطعات یکپارچه بسیار پیچیده، تنها در یک مرحله کاری می‌باشد. در حالیکه تولید چنین قطعاتی با روشهای سنتی تولید، ممکن است در چند مرحله و به کمک چندین فرایند جداگانه انجام شود و در نهایت به تولید یک سازه جوشکاری شده بینجامد. ]1[

گستردگی و تنوع منابع انرژی و روشهای اعمال آن برای تغییر شکل قطعه کار، سطح و توانایی روشهای شکل‌دهی سریع را قابل مقایسه و رقابت با روشهای سنتی شکل نموده است گسترده موادی که در این روش قابل استفاده‌اند بسیار متنوع است. فلزاتی چون آلومینیم، بریلویم، تیتانیوم، فولادهای کربنی و آلیاژی، سوپر آلیاژا، فولادضد زنگ، مس، برنج و ... بطور گسترده در این روش استفاده می‌شوند. ]1[

رفتار ماده در شکل‌دهی آن بسیار مهم است و فاکتورهائی چون اثر سرعت بر شکل‌پذیری و مقاومت ماده، پایداری هندسی و اثرات موج بر روی قطعه کار باید مد نظر قرار گرفته شود. همچنین اصطکاک بین سطح قطعه کار و سطح قالب نیز از جمله نکات مهم محسوب می‌شود. ضریب اصطکاک معمولاً با افزایش سرعت نسبی بین قطعه، قالب کاهش می‌یابد. در نتیجه این افزایش سرعت، دما به مقدار قابل ملاحظه‌ای افزایش خواهد یافت و در نتیجه روانساز بین قطعه و قالب تجزیه شده و از بین خواهد رفت. در سرعتهای بالا، دما ممکن است بعدی بالا که یک لایه نازک از فلز در سطح تماس قطعه و قالب ذوب شده و خود بعنوان روانساز عمل کند. ]1[

ضرورتهای استفاده از شکل‌دهی با سرعت بالا عبارتند از:

مواد منفجره ضعیف: ]6[

انفجارهای ضعیف در فضاهای محدود انجام می گیرند و مواد منفجره ضعیف معمولاً در ترکیبات بصورت ذرات دانه‌ای شکل به اشکال و اندازه‌های مختلف ساخته می‌شوند. سوزش این نوع مواد با گرما شروع می‌شوند و سوزاندن با افزایش فشار بطور خطی افزایش می‌یابد و ماکزیمم فشار متناسب با بار دانسیته خالی شده می‌باشد (حجم تقریبی مواد منفجره سوخته شده/ وزن مواد منفجره= دانسیته بار)، فشار تقریبی pa108×5/3 از دانسیته بار 26/0 گرم در سانتی‌متر مکعب نتیجه می‌شود زمان دست یافتن به فشار ماکزیمم و مدت سوختن معمولاً در محدوده 5 تا 25 میکروثانیه می‌باشد. دانسیته بار، شکل و اندازه دانه‌های مواد منفجره در قابلیتهای انواع منفجره تاثیرگذار هستند.

2- مواد منفجره قوی: ]6[

وسیع‌ترین مواد منفجره مورد مصرف دارای ترکیبات شیمیایی واحدی هستند که معمولاً از ترکیبات نیتروژن همراه با مخلوط الکلها و اسید نیتریک ساخته می‌شود. ماده اصلی با ترکیباتی از نرم کننده‌های چسباننده‌ها و پرکننده‌ها مخلوط می‌گردند. از شکسته شدن مولکول ماده منفجره، منواکسید کربن، دی اکسید کربن آب و مقدار زیادی انرژی تولید می‌شود.

فرآیند انفجار بصورت پیوسته در مدت زمان کوتاهی اتفاق می‌افتد، سرعت انفجار مواد منفجره بکار رفته بطور عادی تقریباً 6100 است، فشار بطور آنی در جلو انفجار حدود pa109×9/6 می‌رسد انفجار در مواد منفجره تجارتی با چاشنی آغاز می‌شود.


تحقیق بررسی امنیت انرژی

تحقیق بررسی امنیت انرژی در 15 صفحه ورد قابل ویرایش
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 12 کیلو بایت
تعداد صفحات فایل 15
تحقیق بررسی امنیت انرژی

فروشنده فایل

کد کاربری 6017

تحقیق بررسی امنیت انرژی در 15 صفحه ورد قابل ویرایش


ژئواستراتژی کنونی در قفقاز جنوبی

مقدمه مترجم

اهمیت روز افزون منطقه قفقاز جنوبی به ویژه در مناسبات جدید جهانی و صف بندی قدرتهای منطقه ای و بین المللی، پژوهش و تحقیق پیرامون این منطقه، عوامل و پارامترهای موثر در آرایش قوا و اثرگذاری بر مناسبات آن را در دستور کار موسسات پژوهشی و مراکز مطالعات راهبردی قرار داده است.

ویژگی منحصر بفرد ارتباطی این منطقه بین اروپا و آسیای مرکزی به عنوان منبع بزرگ انرژی، رقابت ویژه روسیه و غرب در این منطقه که حیاط خلوت سنتی روسیه محسوب می شود، مناقشات دامنه دار قومی که بستر بسیاری از منازعات در این منطقه است و عواملی از این دست، اهمیت قفقاز جنوبی را در روابط منطقه ای و حتی بین المللی بیش ازگذشته ساخته است.

متنی که برگردان آن پیش روی شماست به قلم یکی از محققین و صاحبنظران برجسته مسائل ژئواستراتژیک جهانی و منطقه ای به رشته تحریر در آمده است.

بدیهی است ترجمه این مقاله به معنی تائید تمام ادعاهای نویسنده نبوده و هدف افزودن منابع اطلاعاتی به حوزه های کارشناسی مربوطه است.





ژئواستراتژی کنونی در قفقاز جنوبی

در ماههای اخیر روابط روسیه و گرجستان متلاطم شده است .تنش روی داده بین این دو کشور تنها یک نمونه ازصف بندی گسترده استراتژیک بین غرب وروسیه در منطقه قفقاز جنوبی است. در این عرصه، کشورها و سازمانهای مختلف در سطوح منطقه ای و فرامنطقه‌ای، در موضوع امنیت انرژی و ایفای نقش در معادلات قدرت در منطقه درگیر هستند. با در نظر گرفتن این دو عامل تعیین کننده، این سؤال مطرح می شود که موقعیت کنونی منطقه چیست و چه آینده ای برای آن پیش بینی می شود ؟

رویکردهای امنیتی و سیاسی- نظامی بازیگران منطقه ای، در ابعاد مختلف بر این منطقه تاثیر گذار است .این بازیگران شامل گرجستان، ارمنستان و آذربایجان و آتش مناقشات همچنان مشتعل آنان در آبخازیا، اوستیا و قره باغ کوهستانی است .افزون بر آن تاثیر و اعمال نفوذ قدرتهای منطقه ای چون ترکیه و ایران و قدرتهای جهانی مانند ایالات متحده، روسیه و چین، جزئی جدایی ناپذیر از آرایش قدرت در منطقه محسوب می شوند.

علاوه بر کشورها، سازمانهای بین المللی نیز در این بازی بزرگ درگیرند. این سازمانها در سطح منطقه ای عبارتند از سازمان همکاریهای اقتصادی دریای سیاه (B.S.E.C) ، سازمان نیروی دریای سیاه (BLACKSEAFOR)، سازمان نیروی دریای خزر (CASFOR)، سازمان همکاری بین گرجستان، اوکراین، آذربایجان و مولداوی (G.U.A.M)، و سازمان پیمان امنیت دست جمعی (C.S.T.O) همراه با سازمان کشورهای مستقل مشارک المنافع (C.I.S). در سطح بین المللی سازمان پیمان آتلانتیک شمالی (N.A.T.O) و اتحادیه اروپا از وزن مخصوصی در معادلات قدرت منطقه برخوردار می هستند.

رقابت روسیه و آمریکا در قفقاز جنوبی و خزر

اهمیت ژئو استراتژیک قفقاز جنوبی و خزر به عنوان کریدور ارتباطی اروپا به آسیای مرکزی ،به عنوان سرپلی برای کنترل و فشار بر ایران و همچنین به دلیل ذخائر انرژی و مقوله جنگ علیه تروریسم، دلایل اصلی حضور ایالات متحده در منطقه هستند. ایالات متحده با عملیات سنگین نظامی خود در عراق و افغانستان و درپی چرخش ازبکستان به سوی روسیه، متمایل به دستیابی نقاط اصلی قدرت در قفقاز و در راستای حمایت از ژئو استراتژی جهانی خود می باشد .

تحرکات اخیر ایالات متحده ممکن است مبتنی بر اصل تعادل قوا در این منطقه باشد که بعد از فروپاشی اتحاد جماهیر شوروی شکل گرفته است .هم اکنون کاملا مشخص است که ایران و روسیه به عنوان بزرگترین قدرتهای منطقه ای از این امر احساس تهدید می کنند. روسیه، قفقاز جنوبی را حیاط خلوت سنتی خود می داند و توجه روز افزون غرب به این منطقه را زیر نظر دارد. ایالات متحده، آذربایجان را به عنوان مهمترین متحد خود در حوزه دریای خزر برگزیده است و برنامه همکاریهای نظامی با این کشور را طراحی و اجرا می نماید. تحلیل گران نظامی روسیه بر این باورند که این برنامه تداعی کننده برنامه آموزش و تجهیز آمریکا – گرجستان است که از زمان آغاز در سال 2002 گرجستان را برخوردار از ارتشی توانمند، آموزش دیده و مجهز ساخته است.

تحلیل گران روسی از این بیم دارند که به زودی این امر در مورد آذربایجان نیز محقق شود که در اینصورت روسیه از تمام ابزارهای خود جهت نفوذ در آذربایجان محروم خواهد شد.

به نظر می رسد همکاری نظامی آمریکا با کشورهای قفقاز جنوبی و حاشیه دریای خزر به آرامی و بدون مخمصه در حال انجام است. هرچند ایالات متحده در منظر افکار عمومی تظاهر به بی میلی برای حضور نظامی در منطقه می نماید، اما آشکار است که این حضور نظامی در راستای دفاع از منافع این کشور در منطقه و از جمله امنیت انرژی است. علاوه بر پشتیبانی نظامی آمریکا، بودجه دفاعی فزاینده آذربایجان نیز در راستای تقویت قدرت نظامی این کشور است. مسئله ای مطرح شده این است که آیا ایالات متحده قادر به راضی کردن دیگر کشورها از قبیل قزاقستان جهت پیوستن به این پیمان همکاری نظامی خواهد بود؟