دسته بندی | ریاضی |
بازدید ها | 21 |
فرمت فایل | doc |
حجم فایل | 171 کیلو بایت |
تعداد صفحات فایل | 26 |
تعاریف و ویژگیهای بنیادی توابع مثلثاتی
تعاریف و ویژگیهای بنیادی توابع مثلثاتی
1.1. اندازه کمان بر حسب رادیان، دایره مثلثاتی
دانشآموزان اولین چیزی را که در مطالعه توابع مثلثاتی باید بخاطر داشته باشند این است که شناسههای (متغیرهای) این توابع عبارت از اعداد حقیقی هستند. بررسی عباراتی نظیر sin1، cos15، (نه عبارات sin10، cos150،) ، cos (sin1) گاهی اوقات به نظر دانشجویان دورههای پیشدانگاهی مشکل میرسد.
با ملاحظه توابع کمانی مفهوم تابع مثلثاتی نیز تعمیم داده میشود. در این بررسی دانشآموزان با کمانیهایی مواجه خواهند شد که اندازه آنها ممکن است بر حسب هر عددی از درجات هم منفی و هم مثبت بیان شود. مرحله اساسی بعدی عبارت از این است که اندازه درجه (اندازه شصت قسمتی) به اندازه رادیان که اندازهای معمولیتر است تبدیل میشود. در حقیقت تقسیم یک دور دایره به 360 قسمت (درجه) یک روش سنتی است. اندازه زاویهها برحسب رادیان بر اندازه طول کمانهای دایره وابسته است. در اینجا واحد اندازهگیری یک رادیان است که عبارت از اندازه یک زاویه مرکزی است. این زاویه به کمانی نگاه میکند که طول آن برابر شعاع همان دایره است. بدین ترتیب اندازه یک زاویه بر حسب رادیان عبارت از نسبت طول کمان مقابل به زاویه بر شعاع دایرهای است که زاویه مطروحه در آن یک زاویه مرکزی است. اندازه زاویه برحسب رادیان را اندازه دوار زاویه نیز میگویند. از آنجا که محیط دایرهای به شعاع واحد برابر است از اینرو طول کمان برابر رادیان خواهد بود. در نتیجه برابر رادیان خواهد شد.
مثال1-1-1- کمانی به اندازه یک رادیان برابر چند درجه است؟
جواب: تناسب زیر را مینویسیم:
اگر باشد آنگاه یا را خواهیم داشت.
مثال 2-1-1 کمانی به اندازه رادیان برابر چند درجه است؟
حل: اگر و باشد آنگاه
2- دایره مثلثاتی. در ملاحظه اندازه یک کمان چه بر حسب درجه و چه برحسب رادیان آگاهی از جهت مسیر کمان از نقطه مبدا A1 به نقطه A2 حائز اهمیت است. مسیر کمان از نقطه مبدأ به نقطه مقصد در جهت خلاف حرکت عقربههای ساعت معمولاً مثبت در نظر گرفته میشود. در حالیکه در جهت حرکت عقربههای ساعت منفی منظور میشود.
معمولاً انتهای سمت راست قطر افقی دایره مثلثاتی به عنوان نقطه مبدأ اختیار میشود. نقطه مبدأ دایره دارای مختصات (1,0) خواهد بود. آن را بصورت A=A(1,0) نشان میدهیم. همچنین نقاط D,C,B از این دایره را بترتیب با مختصات B=(0,1)، C=(-1,0)، D=(0,-1) داریم.
دایره مثلثاتی را با S نشان میدهیم. طبق آنچه که ذکر شد چنین داریم:
3- پیچش محور حقیقی به دور دایره مثلثاتی. در تئوری توابع مثلثاتی نگاشت از R مجموعه اعداد حقیقی روی دایره مثلثاتی که با شرایط زیر انجام میشود نقش اساسی را ایفا میکند:
(1) عدد t=0 روی محور اعداد حقیقی با نقطه : A همراه میشود.
(2) اگر باشد آنگاه در دایره مثلثاتی نقطه را به عنوان نقطه مبدا کمان AP1 در نظر گرفته و بر محیط دایره مسیری به طول T را در جهت مثبت اختیار میکنیم، نقطه مقصد این مسیر را با Pt نشان داده و عدد t را با نقطه Pt روی دایره مثلثاتی همراه میکنیم. یا به عبارت دیگر نقطه Pt تصویر نقطه A=P0 خواهد بود وقتی که صفحه مختصاتی حول مبدا مختصاتی به اندازه t رادیان چرخانده شود.
(3) اگر باشد آنگاه با شروع از نقطه A بر محیط دایره در جهت منفی، مسیری به طول را مشخص میکنیم. فرض کنید که Pt نقطه مقصد این مسیر را نشان دهد و نقطهای متناظر به عدد منفی t باشد.
همانطوریکه ملاحظه شد جوهره نگاشت : P این نکته را میرساند که نیممحور مثبت اعداد حقیقی در جهت مثبت بر روی S میخوابد؛ در حالیکه نیممحور منفی اعداد حقیقی در جهت منفی بر روی S میخوابد. این نگاشت بکبیک نیست: اگر به عدد متناظر باشد یعنی اگر F=P باشد آنگاه این نقطه نیز به اعداد متناظر خواهد بود:
در حقیقت با افزودن مسیری با طول (در جهت مثبت و یا در جهت منفی) به مسیری به طول t مجدداً به نقطه F خواهیم رسید. نگاره وارون کامل P-1(Pt) نقطه Pt با مجموعه تطابق دارد.